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Abstract

As the computer industry is reaching more and more limits regarding pro-
cessor speed and transistor size, they have to come up with complex new
architectures and more efficient use of the available processing power. For
application developers this can be a difficult task, because they have to be
aware of low-level hardware properties and there are many pitfalls to cir-
cumvent.
The Distributed Application Layer (DAL) framework developed at the Com-
puter Engineering Lab provides application designers with a tool to simplify
their work-flow and still providing a high level of flexibility and more im-
portantly: parallelism. Running an application on multiple processing units
in parallel without synchronization issues, is one of the key features of the
DAL framework.

In the past, a new branch of the DAL framework got developed including
the capability of executing applications on dedicated hardware like Graphics
Processing Units (GPUs) or coprocessors by using OpenCL.
Even though this implementation is working as intended, there are still some
drawbacks which delayed the integration of this branch into the main DAL
framework.

This thesis progresses with integrating the OpenCL capabilities and adds
some new specifications which allow a more generalized definition for DAL
applications. As part of this process, some new programming constructs are
introduced and the framework is extended with a transformation tool. This
addition allows to produce different source code depending on the desired
mapping.

The final evaluations of the newly implemented changes in the DAL frame-
work show that no performance loss can be determined when using the gen-
eralized version of an application.
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1
Introduction

1.1 Motivation

Today, the demand for increasing computing power leads to more and more
complex processor designs and integrated solutions like video decoders for
high-definition video streams.
Alternatively, there are ways to distribute the computational load of an ap-
plication onto multiple processing units and to run them in parallel in order
to increase performance. But this task is difficult and requires a lot of knowl-
edge about the participating units and handling of communication between
them. Parallelism also introduces the need for synchronization of the pro-
cesses and this gets more and more unmanageable, the bigger an application
is. Therefore it is desirable to have a framework for application designers
which reduces their workload by managing the low-level parallelization and
distribution, but still provides enough flexibility to successfully exploit the
available hardware.
Such a software development framework has been developed at the Computer
Engineering Lab. The Distributed Application Layer (DAL) framework al-
lows the user to specify a parallel application using dataflow graphs and map
these graphs onto a multi-processor platform.
As part of a master thesis by Tobias Scherer [1], another part got added
recently, which allows to use the capabilities of a single machine even fur-
ther by performing parts of the computation on Graphics Processing Units
(GPUs) or coprocessors. This is achieved by using OpenCL, which acts as
an interface to the different supported hardware solutions.

— 1 —



1.2. CONTRIBUTIONS

However, this addition to the framework still had some gaps that needed to
be closed before it could be used by the community:

• The implementation has been written on a separate branch of the DAL
framework, which was independent of the main development and there-
fore had to be reintegrated.

• In order to write an OpenCL process, the designer had to learn some
additional programming constructs and be aware of how the framework
interacts with this process. This is contradictory to the idea that low-
level tasks should be handled by the framework.

• The support of multiple machines is one of the goals of the DAL frame-
work, but the current OpenCL implementation only supports a single
platform.

• Because there is no tool available for specifying the underlying archi-
tecture of an OpenCL application, this can be difficult to do manually
and requires some insight knowledge about the identification of the
available processing units.

• OpenCL platforms normally provide a hierarchical memory structure,
but the current implementation only exploits the top-level memory of
an OpenCL device.

Those were some of the problems which needed to be solved in order to
integrate the OpenCL additions into the main branch of the DAL framework.

1.2 Contributions

The contributions of this semester thesis are as follows:

• The integration of the OpenCL capability into the main branch of the
DAL framework.

• The systematization of the language extensions proposed by Tobias
Scherer.

• The implementation of a code transformation tool that transforms
generic source code into OpenCL capable processes or POSIX threads,
according to the specified mapping.

— 2 —



1.3. OUTLINE

1.3 Outline

This thesis is structured as follows: In Chapter 2, some background informa-
tion is given to explain the basic concepts used in this thesis. The proposed
design flow is described in Chapter 3 and an evaluation can be found in
Chapter 4. Finally, Chapter 5 draws a conclusion and provides a short out-
look.
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2
Background

2.1 DAL Framework

A common approach to perform computations more efficiently today, is to
distribute the workload to several independent machines, where each one per-
forms another part of the calculation. At the Computer Engineering Lab,
the Distributed Application Layer (DAL) framework [2] has been developed,
which provides the user with a high-level interface to write distributed ap-
plications.

2.1.1 Kahn Process Networks

The underlying concept of the DAL framework relies on Kahn Process Net-
works (KPNs), which were first introduced by Gilles Kahn [3]. Process net-
works are modelled as directed graphs and used to describe applications by
defining its separate processes and the relations between them. A graphical
representation of a simple process network can be seen in Figure 2.1.

P1

P2

P3

P4 P5

Figure 2.1: Simple process network with five processes and five channels.
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2.1. DAL FRAMEWORK

All processes in a KPN are running independently of each other and com-
municate via First-In First-Out (FIFO) channels. Writing to such a channel
has to be always successful because they are of infinite size, but reading can
block the process if there is no data available. The data blocks exchanged
between the processes are called tokens and their size is fixed for each chan-
nel. KPNs are deterministic [3], meaning that the same sequence of input
tokens has to lead to the same output.

2.1.2 Mapping

By describing an application as a KPN, each process can be executed on
a different processor as long as there exists a channel between them which
they can use to communicate.
Defining which process runs on which processor is called mapping and can
greatly influence the efficiency of an application.

The DAL framework uses KPNs to describe an application and it also allows
to specify a mapping of the processes onto a multi-processor platform as seen
in Figure 2.2.

P1

P2

P3

P4

Switch

P5

Computer 2

Core 1 Core 2

Computer 3

Core 1 Core 2

Computer 1

Core 1

Core 3

Core 2

Core 4

Figure 2.2: Process network with an architecture consisting of three ma-
chines (one quad-core and two dual-core) and some random mapping.

2.1.3 Synchronous Data Flow

In order to specify process networks which can be handled by OpenCL (see
Section 2.2), Tobias Scherer proposed in his master thesis [1] to use the
concept of Synchronous Data Flow (SDF) graphs. This is a special case of
a KPN and makes the following restrictions: In each execution of a process,
also called firing, the process uses and produces a fixed amount of tokens
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2.2. OPENCL

and it is stateless, meaning that the result of a computation only depends
on the current inputs of the process. In the context of an SDF, the processes
are often called actors.
Figure 2.3 shows a graphical representation of an SDF, where the numbers
indicate the amount of tokens consumed or generated in one cycle.

P1

P2

P3

P4 P5

2

4

3

3

1

5

1

4

2 1

Figure 2.3: Simple Synchronous Data Flow graph with random token rates.

2.2 OpenCL

Another method to exploit the processing capability of a machine is to use the
existing processing units like Graphics Processing Units (GPUs) or coproces-
sors for computations. This means that these units are no longer dedicated
to one specific task like processing image data, but can also handle general
purpose computations (more or less efficiently). In order to do so, several
different languages have been developed, including NVIDIA’s proprietary
CUDA framework [4] and the OpenCL [5] GPU computing language.

OpenCL is an open standard adopted by many hardware vendors and is
widely used for parallel computing. Its main concept consists of two parts:
The host, which is responsible to distribute the work to the second part, the
devices. Each device consists of one or more compute units, which are
then further divided into processing elements. This hierarchy is illustrated
in Figure 2.4.

Device

Compute unit

PE PE PE

Compute unit

PE PE PE

Device

Compute unit

PE PE PE

Compute unit

PE PE PE

Device

Compute unit

PE PE PE

Compute unit

PE PE PE

Host

Figure 2.4: OpenCL hierarchy.
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2.2. OPENCL

In software, the function to execute on an OpenCL device is called kernel.
Each kernel has to know how much data it can read and write in one execu-
tion cycle, before it gets called. This is why the introduction of SDF graphs
for OpenCL applications is reasonable, because the number of tokens which
are being produced and consumed is known in advance.

A kernel can be executed on multiple processing elements and compute units
to exploit the parallelism of an OpenCL device. If the used processing el-
ements belong to the same compute unit, the executing kernels are called
work-items and can make use of data-parallelism by running the same
kernel code on distinct data. Different compute units can also contribute
to data-parallelism if they execute the same kernel or they can establish
task-parallelism when running different kernels. The collection of related
work-items on a single compute unit is called a work-group. [6]

2.2.1 Blocks

The paper "Exploiting the Parallelism of Heterogeneous Systems using Dataflow
Graphs on Top of OpenCL" [7] introduces another notion called blocks. In a
case where some output tokens of a process need to be calculated altogether,
they are grouped into a block. Figure 2.5 shows an example where each
execution cycle consumes four tokens and also produces four tokens. Each
output token depends on more than one input token and they need to be
calculated in groups of two.

Input:

Output:

Figure 2.5: Input-output relation with two blocks per execution cycle.
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2.2. OPENCL

Depending on the architecture, there are several methods in which order to
write the output blocks to maximize the efficiency of the memory accesses.
The most straightforward option is to write the blocks following each other
by the same work-item, illustrated in Figure 2.6.

work-item: 1 1 2 2 1 1 2 2

Figure 2.6: Example block access with two available work-items. The num-
bers indicate which work-item writes which output block. Each block consists
of two tokens and 8 tokens have to be written in one execution cycle.

The other method mostly used for GPUs, is the strided method. The output
blocks written by one work-item are spaced equally by the number of actual
work-items in a work-group. Figure 2.7 shows this method with the same
setup as above.

work-item: 1 2 1 2 1 2 1 2

Figure 2.7: Example strided access.
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3
Design Flow

3.1 Overview

In order to successfully run an application with the DAL framework, the
designer has to know how to specify its behaviour.

The following sections describe the steps necessary to create and run an
application with the resulting framework of this thesis. We assume a simple
program with a process network illustrated in Figure 3.1:

generator consumer
1

square
1 1 1

Figure 3.1: Simple producer - consumer Synchronous Data Flow (SDF)
graph.

The generator process is generating some floating point numbers and for-
warding them to the square process via a FIFO buffer. This process is
squaring the given number and outputs it to another FIFO, which connects
to the consumer process. There the received number is printed on the
screen.
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3.2. XML SPECIFICATION

3.2 XML Specification

There are several specifications needed to execute an application with the
DAL framework. Three of those are written in Extensible Markup Language
(XML) and describe the process network, the underlying architecture of
the executing machine and the mapping of the processes to the available
hardware. The additions added by Tobias Scherer and adapted by this thesis
are highlighted in the description by using italic font.

3.2.1 Process Network

The specification for the process network describes the connections between
the different processes. It consists of three different parts:

• The description of the different processes in the network where their
input and output ports are defined together with the location of the
underlying source code file. Listing 3.1 shows an example for the square
process in our simple program.

Listing 3.1: Example square Process.
1 <process name="square" type="local">
2 <port type="input" name="in" tokenrate="1"/>
3 <port type="output" name="out" tokenrate="1" blocksize="1"/>
4 <source type="c" location="square.c"/>
5 </process >

– The process tag specifies a process with a given name and some
type. The type attribute does not influence on the behaviour
described in this thesis.

– The port tag adds an input or output port with name to the
process according to the type attribute. The tokenrate attribute
defines the number of tokens consumed/produced in each execution
cycle. Output ports can also define a blocksize which refers to
the number of tokens in one output block (see Section 2.2.1).

– The source tag is required to specify the location of the source
code for the process. The type attribute defines the source code
language and can be: c, c++ or openclc (see below).

The openclc type is used to directly specify OpenCL kernel code with-
out performing any further transformations. However, this is not re-
quired for the new framework, as OpenCL kernels can be generated
from c type source code files.

— 10 —



3.2. XML SPECIFICATION

• The definition of the channels used in the process network. They are
generally defined as FIFOs with one input and one output port. Ad-
ditionally they specify the size of a single token, as well as how many
tokens the channel can store, because the concept of an infinite FIFO
size is not applicable to reality. An example channel is shown in List-
ing 3.2 with a token size of 4 bytes, which corresponds to a float.

Listing 3.2: Example FIFO Channel.
1 <sw_channel type="fifo" size="10" tokensize="4" name="C1">
2 <port type="input" name="in"/>
3 <port type="output" name="out"/>
4 </sw_channel >

– The sw_channel tag specifies a software channel with a given
name and some type. The type can be either fifo or wfifo
(windowed-FIFO [8]). With the size attribute, the maximum
number of stored tokens within the channel can be specified and
with tokensize the size of a single token can be set in bytes.

– The port tag simply allows to add an input or output port with
name to the channel according to the type attribute.

• The connection between the processes and the channels. Listing 3.3
describes the connection between the FIFO and the square process.

Listing 3.3: Example Channel to Process Connection.
1 <connection name="channel -square">
2 <origin name="C1">
3 <port name="out"/>
4 </origin >
5 <target name="square">
6 <port name="in"/>
7 </target >
8 </connection >

– The connection tag specifies a connection with a given name be-
tween a channel and a process and vice versa.

– The origin tag selects the channel/process with name as the ori-
gin of the connection.

– The target tag selects the channel/process with name as the tar-
get of the connection.

– The port tag selects the port with name from the origin/target
which needs to be connected.

The complete process network XML file describing Figure 3.1 can be found
under Appendix B as Listing B.1.
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3.2. XML SPECIFICATION

3.2.2 Architecture

In order to define a mapping for an application, the framework has to know
about the available hardware. This is currently done manually by providing
an architecture XML file and has a similar structure as the process network:

• The type of each processing unit needs to be specified, together with
its capabilities. Listing 3.4 describes one core of a Central Processing
Unit (CPU) which can handle Portable Operating System Interface
(POSIX) code as well as OpenCL kernels. Each core of a CPU is
treated like a separate processor, because it is an individual process-
ing unit. The additional GPU described, is only capable of executing
OpenCL kernels.

Listing 3.4: Example Processing Units.
1 <processor name="core_0" type="RISC" id="0">
2 <port name="port1"/>
3 <capability name="posix" identifier="0"/>
4 <capability name="opencl" identifier="CPU_4098_Intel(R)Core(TM)

i7 -2600 KCPU@3 .40 GHz_DEV1"/>
5 </processor >
6
7 <processor name="gpu" type="GPU" id="1">
8 <port name="port1"/>
9 <capability name="opencl" identifier="GPU_4098_Capeverde_DEV1"/

>
10 </processor >

– The processor tag specifies a processing element with a given
name and some type. The type can be one of the following:
RISC, DSP or GPU and is used to check the accuracy of a defined
mapping later. The id attribute is used to internally assign a core
identifier.

– The port tag adds an interface with name to the processor which
allows communication.

– The capability tag specifies whether the processor is capable of
handling posix code or opencl kernels according to the name at-
tribute. The identifier attribute is for posix capabilities a sim-
ple number, but for opencl it is more complex and explained below.

The OpenCL identifier has the following structure:
<type>_<id>_<name>_DEV<number>

<type> is the device type which can be either CPU, GPU or ACC (accel-
erator) at the moment.

<id> is the device identifier.

— 12 —



3.2. XML SPECIFICATION

<name> is the device name without any spaces or underscores.

<number> is the number of the device, if there is more than one with
the same name.

For an AMD Radeon HD 7750 [9] GPU (Codename: Cape Verde), the
identifier would read as: GPU_4098_Capeverde_DEV1.

• The shared memory of the machine is simply defined by enumerating
the ports used to connect to the processing units as seen in Listing 3.5.
The memory of a GPU does not need to be specified, because OpenCL
takes care of distributing the data properly.

Listing 3.5: Example Shared Memory.
1 <shared name="localhost">
2 <port name="port1"/>
3 <port name="port2"/>
4 </shared >

– The shared tag specifies a shared memory with a given name.

– The port tag adds an interface with name to the shared memory
which allows communication.

• The actual connections between the processing units and the shared
memory are similar to the connections of the process network. List-
ing 3.6 shows the connection between the GPU and the shared memory.

Listing 3.6: Example Link between GPU and Memory.
1 <link name="link_1">
2 <end_point_1 name="gpu">
3 <port name="port1"/>
4 </end_point_1 >
5 <end_point_2 name="localhost">
6 <port name="port2"/>
7 </end_point_2 >
8 </link>

– The link tag specifies a link with a given name between a proces-
sor and a shared memory.

– The end_point_1 and end_point_2 tags select the processor/shared
memory with name as one of the end points of the connection.

– The port tag selects the port with name from the processor/shared
memory which needs to be connected.

In addition, Listing B.2 describes the architecture of a simple quad-core
processor with an additional GPU.

— 13 —



3.2. XML SPECIFICATION

3.2.3 Mapping

The actual mapping of the processes to the available processing units is
specified in a separate XML file. This is also used to define some specific
properties for a process depending on its mapping. Listing 3.7 shows an
example binding for the square process onto the GPU. It is defined to use
the OpenCL version of the process, which results into a transformation of the
source code into an OpenCL kernel if it is not yet specified as such. There
are also two mapping specific attributes given: the number of work-items
per work-group and the number of work-groups.

Listing 3.7: Example Mapping for the square Process.
1 <binding name="square">
2 <process name="square"/>
3 <processor name="gpu"/>
4 <target >
5 <opencl workitems="256" workgroups="1">
6 <port name="out" access="strided"/>
7 </opencl >
8 </target >
9 </binding >

– The binding tag specifies a binding with name.

– The process tag selects the process to bind by using its name.

– The processor tag selects which processor to map onto depending on
its name.

– The target tag is used to select which implementation to use of the
specified process.

– The tag within target can be either posix which has no further at-
tributes and is the default, or it can be opencl which can specify the
number of workitems per work-group and the number of workgroups.

– For opencl tags, it is possible to specify the output access method (see
Section 2.2.1) in a port tag. The name attribute identifies the port and
access can either be block or strided.

A full example mapping for the squaring application can be found in List-
ing B.3.

— 14 —



3.3. PROCESS SOURCE CODE

3.3 Process Source Code

To describe the functionality of the individual processes, DAL uses C or
C++. The paper "Exploiting the Parallelism of Heterogeneous Systems using
Dataflow Graphs on Top of OpenCL" [7] proposes some changes to the source
code definition in order to allow translation of a process description into
either a POSIX thread or an OpenCL kernel. Those changes were adapted
and implemented as part of this thesis and are described in this section.

3.3.1 Header File

Each process has to be provided with a header file like the one corresponding
to the square process in Listing 3.8.

Listing 3.8: Example square Header File.
1 #ifndef SQUARE_H
2 #define SQUARE_H
3
4 #include <dal.h>
5
6 #define PORT_in "in"
7 #define PORT_out "out"
8
9 typedef float TOKEN_in_t;

10 typedef float TOKEN_out_t;
11
12 #define TOKEN_in_RATE 1
13 #define TOKEN_out_RATE 1
14 #define BLOCK_out_SIZE 1
15 #define BLOCK_out_COUNT (TOKEN_out_RATE / BLOCK_out_SIZE)
16
17 typedef struct _local_states {
18 } Square_State;
19
20 void square_init(DALProcess *);
21 int square_fire(DALProcess *);
22 void square_finish(DALProcess *);
23
24 #endif

The properties of the header file are as follows:

• It has to include the dal.h header file which declares some of the data
types and functions used in a process. Other header files can be in-
cluded, but may cause problems when transforming the process into
an OpenCL kernel.

• Each port of the process has to be defined as PORT_<name> "<name>"
where <name> represents the name of the port used in the XML speci-
fication.
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3.3. PROCESS SOURCE CODE

• The tokens sent and received by a process have to be defined as a new
type TOKEN_<name>_t with <name> again matching the port name for
this token. The size of this data type should match the token size
specified in the XML file.

• There need to be some additional parameters defined, depending on the
port type. Input ports only have to set its token rate as TOKEN_<name>_RATE
(<name> always being the port name) and output ports have to de-
fine its token rate as well as its block size (BLOCK_<name>_SIZE) and
the number of blocks (BLOCK_<name>_COUNT) which is usually simply
(TOKEN_<name>_RATE / BLOCK_<name>_SIZE). For more information
about blocks, see Section 2.2.1.

• If the process is not intended to be used as an OpenCL kernel, it can
store some internal state variables inside the _local_states structure.
Its name should be <Name>_State with <Name> being the camel case
variant of the process name.

• Finally, the header should contain the declaration of the three pro-
cess functions <name>_init, <name>_fire and <name>_finish where
<name> is the process name. All three processes require a pointer to a
DALProcess struct as an argument.
The init and finish functions are called on creation and destruction of
the process and should not return any value. The fire function is called
repeatedly and contains the main functionality of the process. It has
to return an integer number indicating whether it is able to process
more data (0) or if it should not be called anymore (1). This is only
applicable for processes later used as POSIX threads and the return
value is ignored in OpenCL kernels, because they cannot return any
value at all. For compatibility reasons though, the return value is still
required.
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3.3. PROCESS SOURCE CODE

3.3.2 Source File

The actual source file of a process defines its behaviour and Listing 3.9 shows
an example for the square process.

Listing 3.9: Example square Source File.
1 #include "square.h"
2
3 void square_init(DALProcess *p)
4 {
5 }
6
7 int square_fire(DALProcess *p)
8 {
9 TOKEN_in_t *rbuf = (TOKEN_in_t *) DAL_read_begin(PORT_in , sizeof(

TOKEN_in_t), TOKEN_in_RATE , p);
10
11 DAL_foreach (blk : PORT_out)
12 {
13 TOKEN_out_t *wbuf = (TOKEN_out_t *) DAL_write_begin(PORT_out ,

sizeof(TOKEN_out_t), TOKEN_out_RATE , BLOCK_out_SIZE , blk , p);
14 *wbuf = rbuf[blk] * rbuf[blk];
15 DAL_write_end(PORT_out , wbuf , p);
16 }
17
18 DAL_read_end(PORT_in , rbuf , p);
19
20 return 0;
21 }
22
23 void square_finish(DALProcess *p)
24 {
25 }

Source files have to include their header file at the beginning and may also
include other header files. System headers can be included too, but they are
ignored for OpenCL kernels.

The init, fire and finish functions declared in the header file need to be
defined here and their return values and arguments have to be the same as
described in the section above.
There are several functions provided by DAL to interact with the other
processes via the corresponding ports and they are listed below:

• void *DAL_read_begin(int port, int tokensize, int tokenrate,
DALProcess *p)
This function is used to read data of size tokensize from a port with
a given tokenrate.

– int port: should be one of the PORT_<name> constants defined
in the header file

– int tokensize: usually simply uses the sizeof operation on the
TOKEN_<name>_t type
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3.3. PROCESS SOURCE CODE

– int tokenrate: should be one of the TOKEN_<name>_RATE con-
stants matching the used port

– DALProcess *p: used for compatibility reasons and equals the
DALProcess pointer given to the calling function

The return value of DAL_read_begin should be assigned to a variable
of type TOKEN_<name>_t according to the port used.

• void DAL_read_end(int port, void *buf, DALProcess *p)
This function ends the read procedure for port and renders the buf
pointer useless, therefore it should be called near the end of the func-
tion.

– int port: has to be the same PORT_<name> constant as used for
the corresponding DAL_read_begin

– void *buf: the pointer which stored the data returned by DAL_read_begin

– DALProcess *p: used for compatibility reasons and equals the
DALProcess pointer given to the calling function

• void *DAL_write_begin(int port, int tokensize, int tokenrate,
int blocksize, int blk_ptr, DALProcess *p)
This function is used to write data of size tokensize to a port with a
given tokenrate and a given blocksize.

– int port: should be one of the PORT_<name> constants defined
in the header file

– int tokensize: usually simply uses the sizeof operation on the
TOKEN_<name>_t type

– int tokenrate: should be one of the TOKEN_<name>_RATE con-
stants matching the used port

– int blocksize: normally uses the BLOCK_<name>_SIZE constant
matching the used port

– int blk_ptr: used to define which block of the output port is
being written

– DALProcess *p: used for compatibility reasons and equals the
DALProcess pointer given to the calling function

The return value of DAL_write_begin should be assigned to a variable
of type TOKEN_<name>_t according to the port used and is a pointer to
the write buffer.
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3.3. PROCESS SOURCE CODE

• void DAL_write_end(int port, void *buf, DALProcess *p)
This function actually writes the data from the buf pointer to the port.

– int port: has to be the same PORT_<name> constant as used for
the corresponding DAL_write_begin

– void *buf: the pointer to the write buffer returned by DAL_write_begin

– DALProcess *p: used for compatibility reasons and equals the
DALProcess pointer given to the calling function

Apart from these functions, there exists an other construct: the DAL_foreach
loop. It is used to iterate through all output blocks (see Section 2.2.1) using
the method specified in the mapping XML file. The syntax is as follows:
DAL_foreach (<block_id> : <port>) {
}

<block_id> has to be an unused variable name, because it is automatically
transformed into a proper variable type.

<port> has to be one of the PORT_<name> output ports defined in the header
file.
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3.4. FRAMEWORK EXECUTION

3.4 Framework Execution

After specifying all application specific properties and defining the behaviour
of each process, the developer is able to launch the building process. The
steps performed by the DAL framework to execute an application are listed
below:

1. Preparation: The directory structure for the application is created
and all sources and XML specifications are copied there.

2. XML Validation: Each XML file is checked for syntactical errors.

3. XML Flattening: Iterations in the XML specification are replaced
by the actual information and variables are substituted in this process,
resulting in an entirely static version of the specification.

4. XML Checking: All XML files are checked for logical errors, such as
missing connections in the process network or impossible mappings.

5. Controller Generation: The controller which handles the distribu-
tion and connection of the individual processes is generated and the
process sources are adapted.

6. Process Generation: Each process runs through some further trans-
formations to ensure correct identification within DAL.

7. Execution: Finally, the application is executed, which is necessarily
preceded by the compilation of the generated source files.

This thesis mostly changed the behaviour of the controller and process gener-
ation from step 5 and 6. For executing OpenCL applications, a new process
generator got added which uses the SDF implementation from Tobias Scherer
for the process network. It got simplified by removing unnecessary code du-
plicates and an OpenCL test was added which only executes when OpenCL
is actually installed.

Another important step was to introduce a code transformation tool which
handles the translation from the syntax explained in Section 3.3 into the
desired target code. Because of the internal structure of the DAL framework,
the transformation step got added to the controller generation, where all the
necessary information is available.
The required source code adaptions depending on the specified mapping are
explained below.
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3.4. FRAMEWORK EXECUTION

3.4.1 POSIX Transformation

In order to execute the application from Figure 3.1 with all processes as
POSIX threads, there is essentially only one substitution to be made: the
DAL_foreach construct has to be replaced by an actual for loop. All the
other functions like DAL_read_begin and DAL_write_begin are simply im-
plemented as a slightly adjusted version of the original DAL counterpart of
these functions.

3.4.2 OpenCL Transformation

The more important transformations take place if a process has to be exe-
cuted as an OpenCL kernel. The first change to be made is the replacement
of the source file extension, because OpenCL kernels are declared to be *.cl
files.
In order to actually transform a process into an OpenCL kernel, the init, fire
and finish functions need to be changed, because all ports of a process have
to be assigned as arguments to the kernel.
The DAL_foreach loop is replaced by the correct for implementation for
either strided or block output mode (see Section 2.2.1).
The DAL_read_begin and DAL_write_begin functions are replaced with
the corresponding pointer arithmetic by using preprocessor macros and the
DAL_read_end/DAL_write_end functions are simply removed.

Listing 3.10 and 3.11 show the transformed header and source file of the
square process from Listing 3.8 and 3.9 after the preprocessor has run.

Listing 3.10: Transformed square OpenCL Header File.
1 #ifndef SQUARE_H
2 #define SQUARE_H
3
4 #include <dalMacros.h>
5
6 #define PORT_in "in"
7 #define PORT_out "out"
8
9 typedef __global float TOKEN_in_t;

10 typedef __global float TOKEN_out_t;
11
12 #define TOKEN_in_RATE 1
13 #define TOKEN_out_RATE 1
14 #define BLOCK_out_SIZE 1
15 #define BLOCK_out_COUNT (TOKEN_out_RATE / BLOCK_out_SIZE)
16
17 typedef struct _local_states {
18 } Square_State;
19
20 #endif
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3.4. FRAMEWORK EXECUTION

Listing 3.11: Transformed square OpenCL Source File.
1 #include "square.h"
2
3 __kernel void square_init(TOKEN_in_t *PORT_in_name ,
4 __constant uint *PORT_in_size ,
5 TOKEN_out_t *PORT_out_name ,
6 __constant uint *PORT_out_size)
7 {
8 }
9

10 __kernel void square_fire(TOKEN_in_t *PORT_in_name ,
11 __constant uint *PORT_in_size ,
12 TOKEN_out_t *PORT_out_name ,
13 __constant uint *PORT_out_size)
14 {
15 TOKEN_in_t *rbuf = (TOKEN_in_t *)(PORT_in_name + get_group_id (0) *

TOKEN_in_RATE);
16
17 for (int blk = get_local_id (0); blk < BLOCK_out_COUNT; blk +=

get_local_size (0))
18 {
19 TOKEN_out_t *wbuf = (TOKEN_out_t *)(PORT_out_name + get_group_id

(0) * TOKEN_out_RATE + blk * BLOCK_out_SIZE);
20 *wbuf = rbuf[blk] * rbuf[blk];
21 }
22
23 return 0;
24 }
25
26 __kernel void square_finish(TOKEN_in_t *PORT_in_name ,
27 __constant uint *PORT_in_size ,
28 TOKEN_out_t *PORT_out_name ,
29 __constant uint *PORT_out_size)
30 {
31 }
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4
Evaluation

4.1 Overview

In order to see whether or not the newly introduced transformation of the
source code into either POSIX code or OpenCL kernels was successful, a
comparison between the original code from Tobias Scherer and the new
framework was done. This is explained in Section 4.3.1 and shows that
no significant performance loss could be detected.
In Section 4.3.2 some further experiments are carried out to test the func-
tionality and ease of use of the framework.

To see the benefit of the changed specification, Section 4.4 finally illustrates
the simplicity of adapting an existing DAL application to the new syntax.

4.2 Hardware Setup

The machine used to run all of the applications had the following properties:

CPU: Intel Core i7-2600K [10] (4 Cores, 3.40 GHz, 8 MB Cache) with
Hyper-Threading enabled.

GPU: AMD Radeon HD 7750 [9] (8 compute units each 256 processing
elements).

Memory: 16 GB RAM
Operating System: Arch Linux 3.14.6-1-ARCH x86_64.
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4.3. PERFORMANCE EVALUATION

4.3 Performance Evaluation

The example application used to measure the performance, is illustrated
in Figure 4.1 and represents a Motion JPEG (MJPEG) decoder with some
additional filters.

process
frame

process
frame

process
frame

merge
stream

split
stream

output

gauss
filter

sobel
filter

optical
flow

Figure 4.1: Video-processing process network with applied filters.

The three filter processes gaussfilter, sobelfilter and opticalflow are perfectly
suitable for execution as OpenCL kernels, because they allow high data-
parallelism. An existing version of the application already provided an
OpenCL implementation of those filters and for good comparison, all three
processes got rewritten with the newly introduced syntax.

4.3.1 Framework Comparison

In order to compare the performance of the original implementation from
Tobias Scherer with native OpenCL kernel code to the generated version from
the new syntax, the same mapping is used. By measuring the time between
the first arriving output frame and the last one, an overall comparison of
the two implementations is achieved. The setup time at the beginning of
the application is ignored, although the OpenCL implementation might add
some delay there.

As an initial benchmark, all three filters of the video-processing benchmark
are mapped to the GPU and executed with 256 work-items per work-group
and 64 work-groups. Table 4.1 lists the measurements of five separate exe-
cutions for the original code from Tobias Scherer and the rewritten imple-
mentation of this thesis.

The results are very close and they show that the new implementation can
keep up with the original OpenCL version.
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4.3. PERFORMANCE EVALUATION

Original
2.156 s
2.155 s
2.161 s
2.160 s
2.164 s

Average: 2.159 s

New syntax
2.151 s
2.148 s
2.148 s
2.153 s
2.147 s
2.149 s

Table 4.1: Five separate executions with all filters mapped on the GPU.

4.3.2 Mapping Comparisons

To perform further tests of the new framework, the video-processing appli-
cation is executed with different mappings and variable OpenCL properties.

Figure 4.2 shows the results of those experiments where the advantage of
using OpenCL with some elaborate mapping is clearly seen. For those mea-
surements, all three filters are mapped on different cores of the CPU and
every change can be done in the XML specification. In this example when
using the CPU as OpenCL device, no performance improvement could be
seen when increasing the number of work-items.

Figure 4.2: Different generators and mappings for the video-processing
benchmark. On the far left, the application is generated with the standard
POSIX generator. The second bar shows the result for the same mapping,
but using the OpenCL generator where the channels are considered to be
SDF FIFOs. The four remaining results are generated by the OpenCL gen-
erator as well, but now the actual OpenCL kernels are used. The numbers
indicate the following: #work-groups-#work-items.
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4.4. ADAPTABILITY

The performance when using the generated OpenCL kernels with very few
work-groups is significantly worse than the POSIX version which essentially
makes use of the same computational resources. The reason for this seems
to be the overhead produced by the existing channel implementation. Each
firing needs to allocate host memory and copies the required data into this
memory location. By increasing the parallelism with the number of work-
groups, this overhead has less impact because the number of memory allo-
cations is reduced.

4.4 Adaptability

In order to see whether the newly introduced syntax and the correspond-
ing specifications are easily applicable to existing DAL applications, an-
other benchmark got rewritten. It is an ultrasound application developed by
Harshavardhan Pandit [11] where the existing process network got slightly
changed to conform to the SDF properties.

Applying the new syntax to one of the processes originally written as a
POSIX thread, can be done within several hours. The result is an application
which can run one of its processes on any OpenCL enabled device available.
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5
Conclusion

5.1 Summary

The main purpose of this thesis was to enable OpenCL functionality within
the DAL framework. This was achieved by integrating the OpenCL generator
developed by Tobias Scherer into the current DAL version while maintaining
full compatibility of already existing applications which use the framework.

To improve the ease of use of the existing OpenCL implementation, the pro-
cess specification got extended with some more flexible functions for channel
communication. Those functions together with a newly introduced loop con-
struct also enable control over OpenCL specific data-parallelism.

This extension of the source code specification as well as some additions
in the architecture and mapping specification, lead to the introduction of
a code transformator. The transformator is capable of generating either
POSIX code or OpenCL kernel code from a single source file, depending on
the specified mapping.

In order to test the functionality of the transformator, the OpenCL part
of an existing application got rewritten and the performance of the original
implementation was compared to the newly generated version of the appli-
cation. The evaluation then confirmed that no performance loss could be
determined.
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5.2 Outlook

Even though the OpenCL generator got added successfully and the code
transformation is working properly, there are some limitations for application
designers when using the new syntax. Some of the known barriers are listed
below, together with possible solutions:

• By defining processes in a more generalized manner, some functions
which make use of the underlying hardware architecture cannot be
used, which leads to a slightly less efficient execution.

This is considered to be a trade-off for generalizing process descriptions.
It is difficult to solve and would possibly decrease the simplification
aspect of the framework.

• The use of process internal variables which are stored between mul-
tiple executions are not allowed due to the fact that SDF graphs are
stateless. Furthermore, OpenCL kernels are not able to keep data over
multiple executions.

This is a general problem when using SDF graphs and would require a
conceptual change in the process network description. However, storing
variables could be achieved by inserting feedback loops into the process
network to simulate the desired behaviour.

• Processes need to specify each input and output port individually in
the XML specification and in its source file, which disallows the use of
port arrays where multiple ports are defined at once.

This problem can be avoided by using the newly introduced parallelism
and specifying the process network without such port arrays. The
desired duplication of the processes can then be achieved by adapting
the source code and determining an appropriate mapping.

• The idea of distributing an OpenCL application over several different
machines does not yet apply to the present framework implementation.

However, the flexibility of the framework should allow fast and straight-
forward insertion of this functionality as future work.
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A
List of Acronyms

CPU Central Processing Unit.

DAL Distributed Application Layer.
DSP Digital Signal Processor.

FIFO First-In First-Out.

GPU Graphics Processing Unit.

KPN Kahn Process Network.

MJPEG Motion JPEG.

POSIX Portable Operating System Interface.

RISC Reduced Instruction Set Computer.

SDF Synchronous Data Flow.

XML Extensible Markup Language.
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B
Example Source Files

Listing B.1: Example Process Network XML
1 <processnetwork name="Squaring">
2 <process name="generator" type="io">
3 <port type="output" name="out"/>
4 <source type="c" location="generator.c"/>
5 </process >
6 <process name="consumer" type="io">
7 <port type="input" name="in"/>
8 <source type="c" location="consumer.c"/>
9 </process >

10 <process name="square" type="local">
11 <port type="input" name="in" tokenrate="1"/>
12 <port type="output" name="out" tokenrate="1" blocksize="1"/>
13 <source type="c" location="square.c"/>
14 </process >
15
16 <sw_channel type="fifo" size="10" tokensize="4" name="C1">
17 <port type="input" name="in"/>
18 <port type="output" name="out"/>
19 </sw_channel >
20 <sw_channel type="fifo" size="10" tokensize="4" name="C2">
21 <port type="input" name="in"/>
22 <port type="output" name="out"/>
23 </sw_channel >
24
25 <connection name="g-c">
26 <origin name="generator">
27 <port name="out"/>
28 </origin >
29 <target name="C1">
30 <port name="in"/>
31 </target >
32 </connection >
33 <connection name="c-s">
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34 <origin name="C1">
35 <port name="out"/>
36 </origin >
37 <target name="square">
38 <port name="in"/>
39 </target >
40 </connection >
41 <connection name="s-c">
42 <origin name="square">
43 <port name="out"/>
44 </origin >
45 <target name="C2">
46 <port name="in"/>
47 </target >
48 </connection >
49 <connection name="c-c">
50 <origin name="C2">
51 <port name="out"/>
52 </origin >
53 <target name="consumer">
54 <port name="in"/>
55 </target >
56 </connection >
57 </processnetwork >
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Listing B.2: Example Architecture XML
1 <architecture name="Quad -core␣platform␣with␣GPU">
2 <processor name="core_0" type="RISC" id="0">
3 <port name="port1"/>
4 <capability name="posix" identifier="0"/>
5 <capability name="opencl" identifier="CPU_4098_Intel(R)Core(TM)i7

-2600 KCPU@3 .40 GHz_DEV1"/>
6 </processor >
7 <processor name="core_1" type="RISC" id="1">
8 <port name="port1"/>
9 <capability name="posix" identifier="1"/>

10 <capability name="opencl" identifier="CPU_4098_Intel(R)Core(TM)i7
-2600 KCPU@3 .40 GHz_DEV1"/>

11 </processor >
12 <processor name="core_2" type="RISC" id="2">
13 <port name="port1"/>
14 <capability name="posix" identifier="2"/>
15 <capability name="opencl" identifier="CPU_4098_Intel(R)Core(TM)i7

-2600 KCPU@3 .40 GHz_DEV1"/>
16 </processor >
17 <processor name="core_3" type="RISC" id="3" substitute="1">
18 <port name="port1"/>
19 <capability name="posix" identifier="3"/>
20 <capability name="opencl" identifier="CPU_4098_Intel(R)Core(TM)i7

-2600 KCPU@3 .40 GHz_DEV1"/>
21 </processor >
22
23 <processor name="gpu" type="GPU" id="4">
24 <port name="port1"/>
25 <capability name="opencl" identifier="GPU_4098_Capeverde_DEV1"/>
26 </processor >
27
28 <shared name="localhost">
29 <port name="port1"/>
30 <port name="port2"/>
31 <port name="port3"/>
32 <port name="port4"/>
33 <port name="port5"/>
34 </shared >
35
36 <link name="link_1">
37 <end_point_1 name="core_0">
38 <port name="port1"/>
39 </end_point_1 >
40 <end_point_2 name="localhost">
41 <port name="port1"/>
42 </end_point_2 >
43 </link>
44 <link name="link_2">
45 <end_point_1 name="core_1">
46 <port name="port1"/>
47 </end_point_1 >
48 <end_point_2 name="localhost">
49 <port name="port2"/>
50 </end_point_2 >
51 </link>
52 <link name="link_3">
53 <end_point_1 name="core_2">
54 <port name="port1"/>
55 </end_point_1 >
56 <end_point_2 name="localhost">
57 <port name="port3"/>
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58 </end_point_2 >
59 </link>
60 <link name="link_4">
61 <end_point_1 name="core_3">
62 <port name="port1"/>
63 </end_point_1 >
64 <end_point_2 name="localhost">
65 <port name="port4"/>
66 </end_point_2 >
67 </link>
68 <link name="link_5">
69 <end_point_1 name="gpu">
70 <port name="port1"/>
71 </end_point_1 >
72 <end_point_2 name="localhost">
73 <port name="port5"/>
74 </end_point_2 >
75 </link>
76 </architecture >
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Listing B.3: Example Mapping XML
1 <mapping name="Mapping">
2 <binding name="generator">
3 <process name="generator"/>
4 <processor name="core_2"/>
5 <target >
6 <posix/>
7 </target >
8 </binding >
9 <binding name="square">

10 <process name="square"/>
11 <processor name="gpu"/>
12 <target >
13 <opencl workitems="256" workgroups="1">
14 <port name="out" access="strided"/>
15 </opencl >
16 </target >
17 </binding >
18 <binding name="consumer">
19 <process name="consumer"/>
20 <processor name="core_2"/>
21 <target >
22 <posix/>
23 </target >
24 </binding >
25 </mapping >
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DAL Process Network Specification

producer worker consumer

function fire() 
{ 
 write(data) 
}

function fire() 
{ 
 read(data) 
 manipulate(data) 
 write(data) 
}

function fire() 
{ 
 read(data) 
}
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OpenCL DAL Process
__kernel void fire(__global float *in, 
                   __global float *out) 
{ 
 int gid = get_group_id(0); 
 int lid = get_local_id(0); 
 int lsz = get_local_size(0); 
!
 __global float *rbuf = in + gid*TOKEN_IN_RATE; 
!
 for (int blk = lid; blk < BLOCK_OUT_COUNT; blk += lsz) 
 { 
  __global float *wbuf = out + gid*TOKEN_OUT_RATE  
   + blk*BLOCK_OUT_SIZE; 
!
  *wbuf = rbuf[blk] * rbuf[blk]; 
 } 
}
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OpenCL DAL Process
__kernel void fire(__global float *in, 
                   __global float *out) 
{ 
 int gid = get_group_id(0); 
 int lid = get_local_id(0); 
 int lsz = get_local_size(0); 
!
 __global float *rbuf = in + gid*TOKEN_IN_RATE; 
!
 for (int blk = lid; blk < BLOCK_OUT_COUNT; blk += lsz) 
 { 
  __global float *wbuf = out + gid*TOKEN_OUT_RATE  
   + blk*BLOCK_OUT_SIZE; 
!
  *wbuf = rbuf[blk] * rbuf[blk]; 
 } 
}

No high-level code
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int fire(DALProcess *p) 
{ 
 float i; 
 DAL_read((void*)PORT_IN, &i, sizeof(float), p); 
!
 i = i*i; 
!
 DAL_write((void*)PORT_OUT, &i, sizeof(float), p); 
!
 return 0; 
}
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DAL Process
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Extended DAL Specification
int fire(DALProcess *p) 
{ 
 float *rbuf = DAL_read_begin(PORT_IN, IN_RATE, p); 
!
 DAL_foreach (blk : PORT_OUT) 
 { 
  float *wbuf = DAL_write_begin(PORT_OUT, OUT_RATE, blk, p); 
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  *wbuf = rbuf[blk] * rbuf[blk]; 
!
  DAL_write_end(PORT_OUT, wbuf, p); 
 } 
!
 DAL_read_end(PORT_IN, rbuf, p); 
!
 return 0; 
}
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int fire(DALProcess *p) 
{ 
 float *rbuf = DAL_read_begin(PORT_IN, IN_RATE, p); 
!
 DAL_foreach (blk : PORT_OUT) 
 { 
  float *wbuf = DAL_write_begin(PORT_OUT, OUT_RATE, blk, p); 
!
  *wbuf = rbuf[blk] * rbuf[blk]; 
!
  DAL_write_end(PORT_OUT, wbuf, p); 
 } 
!
 DAL_read_end(PORT_IN, rbuf, p); 
!
 return 0; 
}

13

Transformation into POSIX
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Transformation into POSIX

float rbuf[IN_RATE]; 
DAL_read((void*)PORT_IN, &rbuf, sizeof(float), p);

for (int blk = 0; blk < BLOCK_OUT_COUNT; blk++)

float wbuf[OUT_RATE];

DAL_write((void*)PORT_OUT, &wbuf, sizeof(float), p);
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Transformation into OpenCL

Matthias Baer, ETH Zürich 25.06.14| |

int fire(DALProcess *p) 
{ 
 float *rbuf = DAL_read_begin(PORT_IN, IN_RATE, p); 
!
 DAL_foreach (blk : PORT_OUT) 
 { 
  float *wbuf = DAL_write_begin(PORT_OUT, OUT_RATE, blk, p); 
!
  *wbuf = rbuf[blk] * rbuf[blk]; 
!
  DAL_write_end(PORT_OUT, wbuf, p); 
 } 
!
 DAL_read_end(PORT_IN, rbuf, p); 
!
 return 0; 
}

__global float *rbuf = in + gid*TOKEN_IN_RATE;

for (int blk = lid; blk < BLOCK_OUT_COUNT; blk += lsz)

14

Transformation into OpenCL

__global float *wbuf = out + gid*TOKEN_OUT_RATE 
 + blk*BLOCK_OUT_SIZE;
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Evaluation
• Performance comparison 

➡ Handwritten OpenCL code vs. generated OpenCL code 
➡ Executing an application with different mappings 

• Adaptability 
➡ Simplicity of converting an existing DAL application
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Evaluation - Setup

CPU Intel Core i7-2600K 
(4 Cores, 3.40 GHz, 8 MB Cache)

GPU AMD Radeon HD 7750 
(8 Compute Units each 256 Processing Elements)

Memory 16 GB RAM

Operating 
System Arch Linux 3.14.6-1-ARCH x86_64
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Evaluation - Application
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Evaluation - Comparison

Original OpenCL 
Implementation New Syntax

GPU 2.159 s 2.149 s

CPU 24.62 s 24.64 s
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• All processes mapped to the CPU 
➡ The filters can be executed either as POSIX threads  

or using the OpenCL framework
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Evaluation - Experiments
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Evaluation - Experiments
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MappingProcess Network Architecture
• Integration of OpenCL  

generator into DAL 
• Adaption of the  

specification 
• Added a transformator 

to create POSIX or OpenCL 
code from one code base 

• Comparison shows no 
significant performance loss
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Conclusion

DAL Framework
POSIX Transformator

OpenCL-capable 
platform

POSIX-capable 
platform

OpenCL Transformator

POSIX Generator OpenCL Generator
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