
Multi-Objective Mapping Optimization via Problem
Decomposition for Many-Core Systems

Shin-Haeng Kang∗, Hoeseok Yang†, Lars Schor†, Iuliana Bacivarov†, Soonhoi Ha∗, and Lothar Thiele†

∗School of Electrical Engineering and Computer Science
Seoul National University, 151-742 Seoul, South Korea

{shkang, sha}@iris.snu.ac.kr

†Computer Engineering and Networks Laboratory
ETH Zurich, CH-8092 Zurich, Switzerland
{firstname.lastname}@tik.ee.ethz.ch

Abstract—Due to the trend of many-core systems for dy-
namic multimedia applications, the problem size of mapping
optimization gets bigger than ever making conventional meta-
heuristics no longer effective. Thus, in this paper, we propose
a problem decomposition approach for large scale optimization
problems. We basically follow the divide-and-conquer concept, in
which a large scale problem is divided into several sub-problems.
To remove the inter-relationship between sub-problems, proper
abstraction is applied. The divided sub-problems can be solved
either in parallel or in a sequence. The mapping optimization
problem on dynamic many-core systems is decomposed and
solved separately considering the system state and architectural
hierarchy. Experimental evaluations with several examples prove
that the proposed technique outperforms the conventional meta-
heuristics both in optimality and diversity of the optimized pareto
curve.

I. INTRODUCTION

Today’s multimedia embedded systems face a continuously
increasing demand in system performance, leading to the
integration of several and possibly heterogeneous (many) cores
on a single chip. While modern multimedia handheld devices
as well as personal computers already have dual- or quad-
core processors inside, the number of cores on a die keeps
growing up to several dozens [14], [16], [18]. Moreover,
the digital convergence trend is to have systems running
multiple applications simultaneously in different combinations
at different moments in time. Thus, the application software
is no longer static or monolithic, but dynamic and concurrent
[10], [17].

In this context, one of the key EDA problems is mapping
optimization, i.e., how to assign tasks to cores, communication
between tasks to the on-chip communication fabric, and how
to arbitrate shared resources. Mapping optimization is known
to be NP-hard, even for homogeneous multi-core systems
[21], and several approaches have been proposed. One popular
approach is the use of integer linear programming (ILP)
[20], [22], that mathematically computes optimal solutions.
However, due to the intractable time complexity, ILPs are not
scaling well to large problem sizes. Another popular approach
is using meta-heuristics, such as genetic algorithms (GA) [11],
quantum-inspired evolutionary algorithms (QEA) [21], or ant
colony optimizations (ACO) [8]. Meta-heuristics find near-
optimal solutions in a significantly reduced time and provide

pareto-optimal solutions, since typically multiple objectives
are being investigated [19].

In many-core systems, however, these multi-objective meta-
heuristics are no longer effective, due to the scale of the
investigated problems. The main problem is convergency to
local optima: the larger the design space is, the more likely
is to converge to a local optimum. In this paper, we propose
a multi-objective mapping optimization technique that over-
comes this shortcoming. The proposed technique relies on
problem decomposition into sub-problems that can be solved
individually.

To briefly introduce the proposed technique, let us consider
the mapping optimization example in Fig. 1. A task graph is
shown in Fig. 1(a), in which vertices and directed edges denote
concurrently running tasks and communication between them,
respectively. Each task is annotated with utilization require-
ments. The link between processes 4 and 5 is particularly high-
lighted with a thicker arrow, denoting a highly communication
intensive link. The target architecture is depicted in Fig. 1(b),
illustrating a hierarchical system with two clusters connected
via on-chip network. Each cluster includes two processors
communicating via a fast intra-cluster communication medium
Cl, that can be a shared bus or crossbar.1 The utilization of
a certain processor should not exceed 1.0 (i.e., computed as
the sum of individual utilizations of tasks mapped to that
processor), while the used communication bandwidth should
be less than the system available bandwidth. With these
utilization constraints respected, the objectives are to balance
the workload over all processors in the system and to minimize
the communication overhead at the same time. Since the intra-
cluster communication media offers a larger bandwidth than
the on-chip network in general, it is desirable to allocate
communication intensive links inside a cluster, thus isolate it
from inter-cluster communication.

First, let us show how traditional meta-heuristics struggle
to obtain good solutions. Suppose that there is a population
that implies the mapping candidate in Fig. 1(c) during op-
timization. This is not a good solution since it stresses the

1Note that in current many-core architectures the number of clusters and
core per cluster is in fact much bigger.

28

Fig. 1. Motivational example: (a) task graph annotated with required
utilizations, (b) target hierarchical architecture, (c) an initial mapping, (d)
task-to-cluster mapping variation from (c), and (e) refined task-to-processor
mapping from (d).

on-chip network with intensive communication (4 → 5).2

Traditional meta-heuristics, however, may fail to remove this
communication overhead with mapping variations, because
there exists a tight utilization constraint which does not allow
tasks 4 or 5 to be moved to the other cluster. To evolve to
an efficient mapping like the one in Fig. 1(e), several changes
should be made at the same time, which is usually avoided in
meta-heuristics that try to preserve locality during optimization
[15]. Generally speaking, the more constraints to be respected
(or objectives to be optimized), the less freedom we are given
during exploration.

Alternatively, we propose to divide the mapping problem
into sub-problems, i.e., for this example, task-to-cluster and
task-to-processor mappings, and solve them sequentially. In
the first stage, only the task-to-cluster mapping is determined.
At this level, the candidate shown in Fig. 1(c) can easily be
evolved to Fig. 1(d) by assigning task 5 to the other cluster
(Cl2), in which the intensive communication on the network
is optimized. Then, in the second phase task-to-processor
mapping can be further refined, resulting in the optimized
mapping in Fig. 1(e). In other words, isolating some details
in the first phase enables the exploration beyond the local
optimum.

This decomposition can be seen as a hierarchical top-
down optimization. That is, starting from the top level in the
architecture hierarchy, the system is sequentially optimized
and refined to lower levels. The intended positive effect is
to reduce the possibility of convergence to a local minimum,
as exemplified in Fig. 1. However, this comes at the cost of
solution space reduction, i.e., compared to the conventional
meta-heuristics that optimize over the entire design space, this
decomposition might encounter losses for individual solution
spaces of sub-problems, that may result in a sub-optimal
overall solution. To compensate this loss, we propose to apply
an additional conventional optimization at the end, with having

2Note that all communications except the intensive one are omitted for
brevity.

the optimized solution as initial population, e.g., the solution
of Fig. 1(e).

Three intuitive ideas lay behind this decomposition-based
approach: divide-and-conquer, prioritization, and abstraction.
By decomposing a problem into sub-problems, we take ad-
vantage of the reduced design space for each sub-problem,
that is the principle behind divide-and-conquer procedures.
These sub-problems are either independent or inter-related
with each other. In case that they are independent, they
can be optimized individually and, trivially, just merged in
the end. However, tightly coupled sub-problems cannot be
solved concurrently, but sequentially by successively refining
the abstracted properties. The order in which sub-problems
are handled is critical, since it affects the optimality of the
solution. This should be decided by a proper prioritization.
For instance, the on-chip network in Fig. 1 is critical compared
to the intra-cluster communication with high bandwidth, and
therefore task-to-cluster mapping is solved first, prior to task-
to-processor decisions.

When dealing with tightly coupled sub-problems, their inter-
relationships should be properly decoupled. In a sub-problem,
missing details from the other sub-problems should still be
handled, that is the abstraction principle. For instance, for
task-to-cluster mapping, the processor load balancing should
be evaluated without task-to-processor mapping information.
To this end, we need to introduce speculation methods during
the decomposition of tightly coupled sub-problems.

The main contribution of this paper is to propose a multi-
objective mapping optimization technique for dynamic many-
core systems with problem decompositions, in which three
key principles, i.e., divide-and-conquer, prioritization, and
abstraction, are implemented. With extensive case studies, we
show that the mapping problem of dynamic application sce-
narios onto hierarchical many-core architecture is efficiently
solved. The proposed decomposition-based multi-objective
meta-heuristic framework could generally be applied to other
large scale optimization problems.

II. RELATED WORK

EDA optimization problems are typically defined by multiple
objectives that have to be optimized simultaneously [2], [19],
[24]. Therefore, solutions may not be comparable with each
other, some being better in some of the objectives and worse
in others. Thus, designers usually have to deal with pareto-
optimal sets rather than single solutions. A simple approach
is to aggregate all objectives into a single, parameterized
objective function [3]. Though this approach is beneficial in
the sense that well-established single-objective technique can
be used seamlessly, it is sensitive to the shape of the pareto
front, prior knowledge on the problem may be required, and
it requires several optimization runs which do not exploit
synergy from each other.

To overcome these shortcomings, multi-objective evolution-
ary algorithms (MOEA) have been proposed. To properly
manage populations to evolve to a pareto-optimal set, non-
dominated sorting [5], strength pareto evolutionary algorithm

29

[26], and simple indicator algorithm [25] have been proposed.
Problem specific specialization of operators (i.e., crossover
and mutation) and different chromosomal representations have
also been studied [3], [7], [9]. However, MOEAs are still not
scaling well to large problems.

A decomposition-based MOEA has been introduced in [23],
where the design space is decomposed in sub-spaces that can
be individually optimized for a single objective. Neighborhood
relations are defined among sub-spaces. While ordinary EAs
are used to optimize these sub-spaces simultaneously, each
still needs to consider the status of its neighbors. Though this
technique might explore the design space faster, it is usually
worse than ordinary MOEAs in terms of solution quality
since it aggregate multiple objectives into one for individual
optimizations. Moreover, as this work does not decompose the
problem itself, the large problem size is still an issue.

Another decomposition approach for optimization problems
has been proposed in [12] and formalized in [1]. The basic
idea is that a set of valid and good sub-solutions compose a
valid and good global solution, i.e., the monotonicity property.
The main propositions justifying this decomposition technique
are as follows: (1) the solution space of sub-problems is
smaller than the global one, as the number of parameters to
be optimized is smaller; (2) the evaluation effort for each sub-
problem is lower; and (3) a larger number of system designs
are evaluated in a small fraction of the whole solution space.

In our proposed technique, we hold the same propositions
as above. However, we do not rely on the monotonicity
property, which usually does not hold for complex problems
such as mapping optimization. This is the key difference with
our problem decomposition. The problem in [12] and [1] is
assumed to be composed of sub-problems that are independent
or loosely coupled in a monotonous relationship with each
other. Our proposed technique, in contrast, is more generic,
allowing sub-problems to have general inter-relationships. One
of the key contributions of this paper is how to manage these
relationships.

III. PROBLEM DECOMPOSITION FRAMEWORK

A multi-objective optimization problem (MOOP) is defined
on the set of decision/objective spaces X/Y (with x and y
decision and objective vectors, respectively), and it optimizes
a set of k objective functions fi given the set of m constraints
ei ∈ e(x). The optimization problem can therefore be speci-
fied as follows:

minimize y = f(x) = (f1(x), ..., fk(x))
subject to e(x) = (e1(x), ..., em(x)) = (true, ..., true)

where x = (x1, ..., xn) ∈ X = X1 × ...×Xn

y = (y1, ..., yk) ∈ Y = Y1 × ...× Yk

(1)

Conventional EAs take decision variables and constraints
as inputs and generate a set of optimized solutions. This is
illustrated in the gray box on the right-top of Fig. 2, while
our proposed technique uses several such EA basic blocks, as
identified in the figure. The strategy is to decompose the multi-
objective optimization problem (MOOP) into sub-problems

Fig. 2. Proposed problem decomposition framework.

(MOOPi) and then solve each sub-problem individually. Sub-
problems can either be processed sequentially as illustrated in
Fig. 2, or handled independently and in parallel if the problem
allows it. In each sub-problem, mapping solutions have to be
evaluated separately and independently of the design spaces
of other sub-problems. The decomposition causes incomplete
information in sub-problems, and evaluations can only be done
via so-called speculations. Finally, to compensate the loss of
the reduced solution space that is also a consequence of the
decomposition (as defined in section I), a post-optimization
procedure is executed. Note that the proposed decomposition
can be done in a hierarchical manner, i.e., each MOOPi may
have another decomposition layer inside.

To summarize, we address large scale problems as follows:
1) Decomposition. The given problem is decomposed into

sub-problems, and updated sets of decision variables and
constraints are defined for each sub-problem.

2) Speculation. If a sub-problem does not have complete
information for evaluation of the design space, we derive
an associated abstract method called speculation.

3) Post-optimization. To reach global optimality, a final
global optimization is conducted having the derived so-
lutions of the decomposition chain as initial population.

The following sub-sections are detailing each of above
procedures.

A. Problem Decomposition
To express the dimension reduction of the decision space

due to problem decomposition, we define following relation
on two domains in the decision space Xi = Xi

1×Xi
2×...×Xi

p

and Xj = Xj
1 ×X

j
2 × ...×Xj

q such that q ≤ p,

Xj � Xi if and only if {Xj
1 , X

j
2 , ..., X

j
q} ⊆ {Xi

1, X
i
2, ..., X

i
p}.

Then, a sub-problem MOOPi can be defined in the same
manner as MOOP in Equation (1) with a newly added

30

constraint set ẽi:
minimize yi = f i(xi)

subject to ei(x) = (true, ..., true)
∧ ẽi(x) = (true, ..., true)

where xi ∈ Xi � X,yi ∈ Yi � Y.

(2)

Note that the (sub-)domain Xi of sub-problem MOOPi

is derived from the domain X of MOOP by dimension
reduction. That is, only a fraction of the decision variables
will be represented and considered. But every time one sub-
problem is (sequentially) chained with other sub-problems,
a new constraint set ẽi is transferred from the precedent
sub-problem in the chain. That is, sub-solutions found in
MOOPi−1, i.e. yi−1, are formulated as a constraint set ẽi

then passed to MOOPi, prevent it from searching candidates
that violate previous sub-solutions.

Our problem decomposition approach can be used in both
hierarchical and flat manners. Hierarchical decomposition can
be applied when the problem can be gradually refined, in a
chain of sub-problems (also called top-down refinement), i.e.,
if X1 � X2 � X3 � ... � Xn. On the other hand, sub-
problems may not naturally expose such a relationship and
completely be separated from each other. This would result
in a flat decomposition, where sub-problems can simply be
solved separately and simultaneously. Previous decomposition
approaches [1], [12], [23] belong to this latter category.

Another metric characterizing the proposed decomposition
is whether it harms the optimality of solution space or not.
That is, if the solution space that contains one or more pareto
solutions could be filtered out by the decomposition, it is
called lossy. If there is no loss of the solution space during
decomposition, in contrast, the method is called lossless.
Lossless decompositions always guarantee the performance
improvement while lossy ones would miss some pareto so-
lutions.

B. Speculation
After decomposition, each sub-problem MOOPi can be
solved individually by only considering xi. The evaluation
function f i, however, cannot be computed only from xi in
some cases. Therefore, the fitness f i has to be estimated with
the partial information given in xi. Speculation is needed
only for hierarchical decompositions that are typically lossy
with respect to decision vectors, flat decompositions include
completely independent sub-problems and speculations are not
necessary.

C. Post-Optimization
When dealing with tightly coupled sub-problems, the solution
space of individual sub-problems is reduced, i.e., what we
call lossy decomposition. In this case, the global optimum
of MOOP may exist beyond the solution space of sub-
solutions that individual sub-problems MOOPi cover. To pre-
vent this, we propose to apply an additional optimization at the
end, starting from the derived solution set. Any conventional
MOEA can be used without any modification for this final
optimization.

Fig. 3. Dynamic applications specified in KPNs and a controlling FSM.

IV. PROPOSED MAPPING OPTIMIZATION

With the problem decomposition presented above, the pro-
posed mapping optimization of dynamic applications onto
many-core systems [17] is illustrated in this section.

A. Problem description

Application: An application is described as a set of Kahn
process networks (KPNs) [13], while the dynamic structure of
the application is specified by a finite state machine (FSM). A
KPN P = (V,L) consists of a set of processes V and a set of
links L. An FSM F = (S, T,E, s0, a, r, h) consists of a set of
states S, a set of events E, a set of transitions T ∈ S×S and
an initial state s0 ∈ S. In addition, the three functions a, r,
and h map transitions to sets of triggering events, states to sets
of running process networks, and states to sets of paused (or
halted) process networks, respectively. In other words, a(t) ⊆
E for all t ∈ T , r(s) ⊆ P for all s ∈ S and h(s) ⊆ P for all
s ∈ S. Of course, r(s) ∩ h(s) = ∅.

Fig. 3 presents an example F ′ = (S′, T ′, E′, s1, a
′, r′, h′),

with

• four states, among which s1 is active initially, i.e., S′ =
{s1, s2, s3, s4};

• eight transitions between states defined as follows: T ′ =
{t1, t2, ..., t7, t8} such that t1 = (s1, s2), t2 = (s2, s1),
and so on;

• the triggering events of each transition are defined in a′,
e.g., the transition t2 from s2 to s1 happens when the
event a′(t2) ∈ E′ is detected in the state s2;

• status of the process networks per each state, defined
in r′ and h′ functions. For instance, in the state s2, P2

is running while P1 is paused, i.e., r′(s2) = {P2} and
h′(s2) = {P1}.

Architecture: The target architecture is assumed to be hi-
erarchical considering the recent design trend [14], [16], [18].
We maintain an abstract representation of this architecture, in
a tree form, as depicted in Fig 4. For illustration, we restrict
ourselves to only two levels of communication: (1) set of
processors that form clusters communicating via a first level
network, e.g., cluster (denoted clx in Fig 4(b)) and (2) clusters

31

Fig. 4. (a) A two level hierarchical multiprocessor architecture and (b) its
abstract representation.

connected via a second level network, e.g., on-chip network
(g in Fig 4(b)).

To describe the architecture in Fig 4 in an abstract and
formal manner, we propose the following formulation: The
architecture A = (C,N1, N2, N3) consists of a set of
processors C and three sets of networks N1, N2, and N3,
which correspond to the three communication layers, i.e.,
intra-processor communication, intra-cluster communication,
and inter-cluster communication. A network n ∈ N2 is defined
as the set of processors that are in the corresponding cluster,
i.e. n ⊆ C. N2 partitions the set of processors such that intra-
cluster networks do not overlap, i.e. we have

⋃
n∈N2 = C

and furthermore, n ∩m = ∅ for all n,m ∈ N2, n 6= m. N3

simply contains a single network N3 = {n} which contains
all processors, i.e. n = C. N1 contains a network for each
processor as it represents the intra-processor communication,
i.e. |N1| = |C| and for each c ∈ C there is a network
n ∈ N1 with n = {c}. In particular, the communication ar-
chitecture in Fig 4 is described by N2 = {cl1, cl2, cl3} where
cl1 = {c1, c2, c3}, cl2 = {c4, c5, c6}, and cl3 = {c7, c8}.
Without loss of generality, the level of communication can be
extended although we assume two levels of communication in
the following sections.

With the specification of application and architecture as
above, we can define mapping problems as follows:

1) Decision Variables: Given the set of KPNs K =
{P1 = (V1, L1), ...,Pn = (Vn, Ln)} and an FSM F =
(S, T,E, s0, a, r, h), for every pair of a process and a state
that the process can be possibly in, determine the cluster
cl and processor c binding. That is, for all (v, s) such that
(v ∈ V) ∧ (P = (V,L) ∈ K) ∧ (s ∈ S) ∧ (P ∈ r(s) ∪ h(s)),

determine (c, cl) such that c ∈ cl (3)

2) Constraints: A valid mapping should satisfy following
constraints:
• No process migration: We need to make sure that a

process is not mapped to different processors if the
corresponding states are connected by a transition. For
each constituent process v ∈ V of a KPN P = (V,L)
and each transition t = (s1, s2) ∈ T of F , the following
condition should be kept for their decision variables
(c1, cl1) and (c2, cl2) for (v, s1) and (v, s2):

P ∈ (r(s1) ∪ h(s1)) ∧ P ∈ (r(s2) ∪ h(s2))
←→ cl1 = cl2 ∧ c1 = c2.

(4)

Fig. 5. Structure of fitness evaluation

• Processor utilization: Utilization of each processor is less
than or equal to 1.0. The processor utilization uccs(c, s)
of a processor c for each state s should satisfy:

uccs(c, s) =
∑

f(v) · w(v, c) ≤ 1.0, (5)

where f(v) and w(v, c) are the number of firings per time
unit and maximum execution time of process v on the
processor c respectively and the mapping is determined
to be (c, cl) for (v, s).

• Link bandwidth: The communication networks should be
able to handle the aggregated bandwidth of all links
mapped to them. The aggregated data volume for each
link l in state s, ulls(l, s), must be smaller than its sup-
ported rate σ(l). Then, for l ∈ L2(P, s, n)∪L3(P, s, n),

ulls(l, s) =
∑ f(l) · q(l)

σ(l)
≤ 1.0, (6)

where f(l) is number of firings (of the source node of
l) per time unit, q(l) is data volume per each firing,
σ(l) is maximum bandwidth of link l per time unit, and
L2/3(P, s, n) denotes the set of all links of P = (V,L)
that are mapped to communication link n ∈ N2/3 in state
s.

3) Objective: The optimization goal of this problem is set
to minimize the variance of workload between components.
In other words, a mapping with well balanced workload is
preferred over the unbalanced one for better throughput [21].

To quantify this, we use the Lp norm which is defined as
follows for a vector L = {e1, e2, e3, . . . , en}:

Lp(L) = (
∑
e∈L

ep)1/p,

where a lower value indicates a better balanced one.
As we have three kinds of component (processor, cluster,

and network) and they are stressed differently according to
the current state of the FSM, we calculate the fitness value
hierarchically as shown in Fig. 5. The norm values for all
components in a state is calculated first and they are merged
into a single representative value as a weighted sum. The
weight vector ws is set properly considering the average exe-
cution time of each state. For instance, Lp norm of processor
utilization in state s is ucs(s) = Lp({uccs(c, s)|∀c ∈ C}) and
the weighted sum of all states is uc =

∑
s∈S ws · ucs(s). ul(2)

and ul(3) can be calculated in a similar way.

32

Fig. 6. Mapping optimization implemented with the decomposition frame-
work.

In summary, the objective vector f to be minimized is

f = (uc, ul(2), ul(3)). (7)

B. Decomposition

Fig. 6 depicts how the defined mapping optimization prob-
lem is structured in the proposed decomposition framework.
Two decomposition approaches are applied in a mixed form.
That is, the state-based one is applied as flat decomposition,
each of which is decomposed further into sub-problems con-
cerning the architectural hierarchy (hierarchical decomposi-
tion). Each will be discussed in detail in what follows.

1) State-based Decomposition: A process network may
have more than one mapping, as it can be active in multiple
scenarios with the constraint described in Eq. (4). That is, the
mappings for the two connected states should be the same in
order not to cause dynamic mapping adjustments. On the other
hand, if a process network is active in two (or more) states
and they are not directly reachable to each other, i.e., there
is no single transition between states, it can have independent
mappings optimized individually. In Fig. 3, P1 is active (or
paused) in s1 and s2, where both of them are connected by
a transition. We enforce the same mapping for two states
here. On the other hand, P3 has two independently optimized
mappings for s1 and s4.

To capture this relationship, we define Connected State
Groups (CSGs) [17] for each application as the set of maxi-
mally connected states where the corresponding application is
active (or paused). If two connected states have an active (or
paused) application in common, they belong to the same CSG.
P1 in Fig. 3, for instance, has only one CSG {s1, s2}, while
P3 has two CSGs {s1} and {s4}. CSGs may also have inter-
relationships. CSG {s1, s2} of P1 is related to CSG {s2, s4}
of P2 as they have P2 active in common in s2. In other
words, s1 and s2 are inter-related via P1 and so are s2 and
s4 via P2. On the contrary, s3 is isolated thus can be treated

TABLE I
DECOMPOSITIONS USED IN THE MAPPING OPTIMIZATION

State-based Architecture-based
Category flat/lossless hierarchical/lossy

Decomposition independent states architectural hierarchy
Speculation not necessary min-max bound

Post-optimization not necessary allowing inter-cluster mutation

separately. Fig. 6 shows that independent sets, S′1, S
′
2, ..., S

′
n,

can be solved separately in MOOP1,MOOP2, ...,MOOPn.
Thus, as the first decomposition, we separate states into

several isolated sets, {s1, s2, s4} and {s3} in the example,
and solve them independently. Then, for each sub-problem
MOOPi with the state set S′ ⊂ S, the decision variables
in Eq. (3) is reduced to s ∈ S′ and the objective in Eq. (7)
as well is partially evaluated only for s ∈ S′. There is no
added constraint for this decomposition since the sub-problems
are completely independent of each other. This is a flat and
lossless decomposition.

2) Architecture-based Decomposition: Each MOOPi can
further be decomposed considering the architectural hierarchy.
We solve two decision variables, task-to-cluster(cl) and task-
to-processor(c), separately and sequentially as shown in Fig. 6.

First, the task-to-cluster mapping is determined in
MOOPi1. The decision variable is now only cl in Eq. (3),
while the objective is kept as Eq. (7). The sub-solution in
this stage is now fed to the next sub-problem MOOPi2 as a
constraint. MOOPi2 fixes task-to-processor while respecting
the cluster mapping decision made above. That is, decision
variables in MOOPi2 is the same as Eq. (3) but with a newly
added constraint ẽi2 from the solution MOOPi1, which is

c ∈ cli1. (8)

The objective is kept as Eq. (7).
Since the task-to-cluster mapping phase does not have

all the required information for the objective in Eq. (7),
speculation is necessary as will be discussed later. The decom-
posed sub-problems in this case have a dimension reduction
relationship (Xi1 � Xi2) and some solution space is lost due
to the sequential chaining of them. Thus, this is a hierarchical
and lossy decomposition.

The decompositions applied to the proposed mapping opti-
mization are summarized in Table I.

C. Speculation

For a task-to-cluster mapping, MOOPi1, in above decom-
position, it is impossible to calculate the exact fitness value as
the task-to-processor mapping is not yet fixed. Furthermore,
a task-to-cluster decision implies various task-to-processor
mappings. Another difficulty comes from the fact that the
monotonicity property does not hold in this case in contrast to
the previous decomposition approaches [1], [12]. To be more
specific, a better choice at task-to-cluster mapping does not
always cause a better fitness at task-to-processor mapping.

The fitness values of f , uc and ul(2) in this case, should
be speculated at this sub-problem. Without an actual mapping
configuration, we can still calculate a bound that a fitness value

33

Fig. 7. The speculation in task-to-cluster mapping.

can possibly be in. For example, the minimum of uc is the
case that all the workloads are as balanced as possible, which
is denoted as ucmin.

Algorithm 1 illustrates how ucmin
s is speculated with the

task-to-cluster mapping given. For brevity of the description,
a cluster is assumed to have only homogeneous processors.
However, this can easily be extended to the heterogeneous
case without loss of generality. It basically follows the best-fit
approach of the bin packing problem. That is, given the the
task-to-cluster mapping, sort all the tasks that are mapped on
a cluster cl (line 4-7). From the sorted list, the heaviest task is
chosen (line 8) and assigned to the idlest processor in cl (line
13-14). If the heaviest one does not fit to the idlest processor,
this solution should be marked as invalid. As the processor list
ccl should always be kept as sorted, the heap sorting is used
here. ul(2),min can be calculated in a similar way. Likewise,
the maximum values, ucmax can also be estimated considering
the worst-case mapping. That is, the worst-fit approach of the
bin packing problem is exploited here to calculate ucmax and
ul(2),max.

Algorithm 1 Speculation of ucmin
s at MOOPi1

1: for all cluster l do
2: initialize a sorted array of processor utilization cl[];
3: initialize array vl[];
4: for all processes vi do
5: append vi to vl if clvi,s = l;
6: end for
7: sort vl by required utilization in descending order
8: for j = 1 to |vl| do
9: if vl[j] + cl[1] > 1.0 then

10: mark as invalid solution;
11: return;
12: else
13: cl[1]← cl[1] + vl[j];
14: sort cl in ascending order;
15: end if
16: end for
17: end for
18: based on cl[] obtained, calculate the Lp norm;

With the speculation of minimum and maximum values,

we can define the coverage of a sub-solution as a space
that the refined solutions from the sub-solution may fit in.
The coverage of MOOPi1, for instance, is a 2-dimensional
rectangular space that is characterized by a combination of
ucmin/ucmax and ul(2),min/ul(2),max as shown in Fig. 7.
Now that the problem is how to evaluate the coverages of
two different sub-solutions.

One possible way is to use the minimum pair
(ucmin, ul(2),min), A0 and B0 in Fig. 7. We call this
min-min speculation. But, this sometimes causes an inaccurate
evaluation since the estimated point is too optimistic thus not
achievable. The counter example is given in Fig. 7. Though
A0 is better than B0 in Fig. 7 within min-min speculation,
cluster-level mapping B provide better solutions at the end
(as denoted as a dotted curve) in the case that smaller cluster
fitness is more desirable than smaller processor fitness.

Alternatively, it can be allowed to have two dif-
ferent metrics: min-max (ucmin, ul(2),max) and max-min
(ucmax, ul(2),min). One of those two is randomly selected
at optimization and the choice does not change to the other
unless the mapping decision is changed. The idea is to let
both solutions have some possibility to survive if they are
incomparable. If we choose A1 and B2 (or A2 and B1) in
Fig. 7, for instance, two solutions are incomparable and then
they both would survive. We call this min-max speculation.

D. Post-optimization

At the post-optimization procedure, we gather all the pop-
ulations from each sub-solution and merge them into one.
This merge process is also important in order to maximize
the objective space coverage. Conventional solution selection
methods such as SPEA-II [26] can be used at this stage. It is
noteworthy that this selection procedure itself is already a huge
problem. In addition, to compensate for the loss of solution
space due to the decomposition, one more optimization can
be conducted here. That is, intra- and inter-cluster mutations
are enabled during the merging procedure.

V. EXPERIMENTS

In this section, the proposed mapping optimization via
the problem decomposition is evaluated quantitatively. The
proposed technique is implemented in Java based on the PISA-
EXPO [4] framework. All experiments have been conducted
in a Linux machine that has eight processors (4 Dual-Core
AMD Opteron 2218 processors) with 8GB main memory.

In what follows, we compare the proposed technique against
a conventional MOEA (denoted as EXPO). Two decompo-
sition techniques presented in Section IV-B1 and IV-B2
are applied to the base model in SDEXPO and ADEXPO
respectively, while SADEXPO has both incorporated as shown
in Fig. 6.

The parameters are set as follows: population size α, num-
ber of parent individuals µ, number of offsprings λ are all set
to 100 (except EXPO) and three objectives in Eq. (7) are set to
be minimized. SPEA-II [26] is used as a selector and constraint
violations are avoided by imposing a big penalty on the fitness.

34

In the proposed decomposition approach, several MOEAs are
separately running. Thus, to make fair comparisons, we let
the base EXPO have more populations and iterations. That is,
α, µ, and λ are all set to 500 and it is allowed to have 10
independent populations that will be merged at the end.

A. Limitation of Conventional Techniques

In advance to the main benchmarks, a synthetic KPN is
tested here to show that the conventional MOEAs are not good
enough to explore large scale solution space. The synthetic
example consists of four very communication intensive KPNs
within a single state. The target architecture is set to a two
cluster system with each having eight cores inside. The objec-
tive is set to have balanced processor utilization and minimized
communication on the network. One of the desired mapping
solutions is that each KPN is isolated in a single cluster,
triggering no communication overhead on the global network.
This is a very intuitive mapping but hard to be found since it
is one of the huge number of possible solutions. Furthermore,
local minima make it harder to reach this optimum.

EXPO and ADEXPO are compared in the reachability. Both
are tested 100 times and observed in how many times they
have found out the solution. EXPO has only succeeded 3 times,
while the success rate of ADEXPO exceeds 70%. This implies
that the isolation of task-to-processor mapping enables more
efficient exploration of the solution space. In particular, if the
network utilization is of critical importance, the gain is more
effective as intended in prioritization.

B. Benchmark Setup

We use two synthetic KPNs (SynthSmall and SynthBig) and
a Picture-in-Picture (PiP) application for benchmarking. For
the synthetic examples, the TGFF [6] is used to randomly
generate the processes and links between them and the con-
trolling FSM is designed arbitrarily. The PiP example, which
is also shown in [17], consists of two MJPEG KPNs and an
FSM.

The Intel Single-chip Cloud Computer (SCC) [14] that has
24 clusters on a single die is considered as target platform. In
SCC, each cluster has two pentium cores integrated and they
communicate with each other via a shared memory. A 4x6
2D-mesh on-chip network enables the inter-cluster communi-
cation. According to the benchmark size, we partially utilize
the platform (from 8 to 48 cores). SynthSmall and SynthBig
are tested on 8 and 12 cores, respectively, while we test two
different architectures for PiP: one with 48 cores (PiP 48)
and the other with 24 (PiP 24). To make the application fit
into the 24 cores, the execution times of processes in PiP
application are halved in PiP 24. More detailed information
on the benchmarks is given in Table II.

C. Solution Space Reduction

First, let us investigate the characteristics of the solution
space in above benchmarks. Even the smallest one, SynthSmall
has total 1.33× 1036 solutions to be explored. Table II shows
that the solution space is dramatically reduced in the proposed

decomposition technique. Note that not all of this solution
space is valid mapping due to the constraints given in Eq.
(4-6). To check how these constraint affect the exploration,
we observe how often the basic EXPO fails to find a feasible
solution within an hour. In SynthSmall and PiP 48, 10 and
4 out of 20 trials have been failed while others have always
been successful. Therefore, we can state that SynthSmall and
PiP 48 are more constrained than others. In the proposed
technique, on the other hand, we have always succeeded to
find feasible solutions within an hour in all benchmarks.

D. Improvement on Optimality

To quantitatively measure the effectiveness of the proposed
technique, the output pareto curves are mainly evaluated in
two metrics: hypervolume and Inverted Generational Distance
(IGD) [27]. The hypervolume of a pareto curve is defined
as area of the dominated space by the curve in the domain,
while IGD denotes the average euclidean distance of solutions
to the true pareto. The bigger hypervolume we have, the more
optimized a solution is, while smaller IGD indicates more
varied solution.

Hypervolumes of the optimized curves (normalized to
EXPO) are shown in Fig. 8(a). As the state-based decompo-
sition is lossless, SDEXPO has never shown worse optimality
than EXPO. In SynthSmall, all the states are inter-related
thus no state-based decomposition is applicable. Note that the
solution space of SDEXPO remains the same as EXPO for
SynthSmall in Table II.

The architecture-based decomposition technique is verified
in ADEXPO. It is a lossy decomposition, which is probable
to lose some good solution space during the decomposition.
Inaccurate speculation may worsen this. The min-min specu-
lation in ADEXPO for SynthSmall illustrates this side effect,
where the hypervolumes are even less than the base EXPO.
Alternatively, the min-max speculation can be used to over-
come this shortcoming. In all benchmarks, it enables larger
design space exploration as indicated in larger hypervolumes.
This emphasizes the necessity of accurate speculations.

To take a deeper look at the effect of the architecture-
based decomposition, we project the obtained pareto curves of
SynthBig from EXPO and SADEXPO onto the 2-dimensional
space of uc and ul(3) as shown in Fig. 9. It is clearly shown
that SADEXPO could explore more solution space below a
certain fitness level (0.27) in the network fitness ul(3). This
result complies with the intended priortization which puts ul(3)

first in the sub-problem chain.
Having both decomposition techniques incorporated to-

gether, SADEXPO always shows the biggest hypervolume.
SADEXPO can effectively increase the hypervolume from
6.9% in PiP 48 to 27.5% in SynthBig compared to EXPO.
The normalized IGDs are compared in Fig. 8(b) to show
the diversity of solutions. The values are smaller with the
decomposition techniques except for SynthSmall with min-
min speculation. Again, this is due to the side effect of the
inaccurate speculation.

35

TABLE II
DESCRIPTION OF BENCHMARKS

#State #Application #Processes #Clusters #Processors Problem Space Problem Space Reduction
SDEXPO ADEXPO SADEXPO

SynthSmall 2 2 40 4 8 1.33E+36 1.33E+36 1.21E+24 1.21E+24
SynthBig 5 5 100 3 12 1.22E+151 8.28E+107 1.94E+84 1.61E+60

PiP 24 9 3 159 12 24 6.58E+249 2.77E+150 2.88E+163 2.73E+98
PiP 48 9 3 159 24 48 2.02E+304 1.80E+183 6.58E+249 2.77E+150

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

SynthSmall SynthBig PiP_24 PiP_48

N
o

rm
al

iz
ed

 h
y

p
er

v
o

lu
m

e

 0

 0.5

 1

 1.5

 2

 2.5

SynthSmall SynthBig PiP_24 PiP_48
N

o
rm

al
iz

ed
 I

G
D

(a) (b)
Fig. 8. Comparative evaluation of optimized pareto curves (normalized to EXPO): in (a) hypervolume and (b) IGD.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67

N
e
tw

o
rk

 F
it

n
e
ss

(u
l(3

))

Processor Fitness(uc)

EXPO
SADEXPO

Fig. 9. Projected pareto curve of SynthBig benchmark in EXPO and
SADEXPO.

We have compared the pareto curves from EXPO and SAD-
EXPO further by counting the number of points that are non-
dominated by each other as shown in Table III. In SynthBig
and PiP 24, SADEXPO mostly dominates the curve from
EXPO. On the other hand, in highly constrained benchmarks,
SynthSmall and PiP 48, considerably many solutions from
EXPO survive as non-dominated against SADEXPO. This is
explained in Fig. 10, where the pareto solutions obtained
from EXPO for PiP 48 are depicted. The non-dominated
solutions are highlighted properly. It is shown that most non-
dominated points tend to have lower cluster fitness value.
The dominated ones have lower network fitness but still

higher than SADEXPO. Therefore, it can be analyzed that
most gain for hypervolume is from the network fitness and
the decomposition negatively influences the cluster fitness.
This exemplifies the cost of the proposed technique. That is,
the abstraction and prioritization enable larger design space
exploration (higher hypervolume and lower IGD) at the cost
of probable sacrifice in some objectives (cluster fitness in this
case).

TABLE III
THE PORTION OF NON-DOMINATED SOLUTIONS AGAINST EACH OTHER

EXPO SADEXPO

SynthSmall 0.639 0.784
SynthBig 0.05 1.000

PiP 24 0.156 0.980
PiP 48 0.96 0.42

E. Effect of Post-Optimization

Lastly, the effect of the post-optimization is evaluated
separately. We have compared the solutions that are not yet
fed to the post-optimization step with the final solutions
and counted the number of dominated points. The maximum
gain is achieved in PiP 24, where 92% of the solutions are
dominated by the final curve. This means that 92% of the sub-
solutions have been improved further by the post-optimization.
Even in the worst-case, PiP 48, 13% of the populations have
been improved by the post-optimization.

36

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53 0.039
 0.04

 0.041
 0.042

 0.043
 0.044

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

N
e
tw

o
rk

 F
it

n
e
ss

(u
l(3

))

non-dominated solutions
all solutions

Processor Fitness(uc)

Cluster Fitness(ul
(2)

)

N
e
tw

o
rk

 F
it

n
e
ss

(u
l(3

))

Fig. 10. Pareto front of PiP 48 obtained from EXPO. Non-dominated
solutions by SADEXPO are highlighted.

VI. CONCLUSION

In this paper, we propose an efficient multi-objective map-
ping optimization technique for many-core systems. To deal
with the vast solution space, the problem is divided into several
smaller sub-problems and solved individually. To break the
inter-relationship between them, speculations are conducted
for fitness evaluation. Separately obtained sub-solutions are
merged into a complete one at the end, where one more
global optimization is performed. Experimental results show
that the decomposed technique outperforms the traditional
meta-heuristics both in optimality and diversity. The proposed
problem decomposition technique can also be applied to other
large scale EDA optimization problems.

ACKNOWLEDGMENT

This work was supported by EU FP7 project EURETILE
(grant number 247846), Korean-Swiss science and technology
cooperation program, and National Research Foundation of
Korea (NRF-2011-357-D00213).

REFERENCES

[1] S. G. Abraham, B. R. Rau, and R. Schreiber. Fast design space
exploration through validity and quality filtering of subsystem designs.
Technical report, Packard, Compiler and Architecture Research, HP
Laboratories Palo Alto, 2000.

[2] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for mesh-
based noc architectures. In Hardware/Software Codesign and System
Synthesis, 2004. CODES + ISSS 2004. International Conference on,
pages 182 – 187, sept. 2004.

[3] S. Bekiroğlu, T. Dede, and Y. Ayvaz. Implementation of different
encoding types on structural optimization based on adaptive genetic
algorithm. Finite Elements in Analysis and Design, 45(11):826–835,
2009.

[4] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. Pisa—a platform
and programming language independent interface for search algorithms.
In Evolutionary multi-criterion optimization, pages 1–1. Springer, 2003.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, 6(2), 2002.

[6] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In
CODES/CASHE ’98: Proceedings of the 6th international workshop on
Hardware/software codesign. IEEE Computer Society, Mar. 1998.

[7] N. Eklund, M. Embrechts, and M. Goetschalckx. Efficient chromosome
encoding and problem-specific mutation methods for the flexible bay
facility layout problem. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 36(4):495–502, 2006.

[8] F. Ferrandi, C. Pilato, D. Sciuto, and A. Tumeo. Mapping and
scheduling of parallel c applications with ant colony optimization onto
heterogeneous reconfigurable mpsocs. In Design Automation Conference
(ASP-DAC), 2010 15th Asia and South Pacific, pages 799 –804, jan.
2010.

[9] C. Fonseca, P. Fleming, E. Zitzler, K. Deb, and L. Thiele. Solving
hierarchical optimization problems using moeas. 2003.

[10] M. Geilen and T. Basten. Reactive process networks. In Proceedings of
the 4th ACM international conference on Embedded software, EMSOFT
’04, pages 137–146, New York, NY, USA, 2004. ACM.

[11] E. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor
scheduling. Parallel and Distributed Systems, IEEE Transactions on,
5(2):113 –120, feb 1994.

[12] J. R. Josephson, B. Chandrasekaran, M. Carroll, N. Iyer, B. Wasacz,
G. Rizzoni, Q. Li, and D. A. Erb. An architecture for exploring large
design spaces. In Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelligence,
AAAI ’98/IAAI ’98, pages 143–150, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[13] G. Kahn. The semantics of a simple language for parallel programming.
proceedings of IFIP Congress74, 1974.

[14] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-
core scc processor: the programmer’s view. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[15] R. Moritz, T. Ulrich, L. Thiele, and S. Brklen. Mutation operator
characterization: Exhaustiveness, locality, and bias. In IEEE Congress
on Evolutionary Computation (CEC), pages 1396–1403, New Orleans,
USA, 2011.

[16] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2007.

[17] L. Schor, I. Bacivarov, D. Rai, H. Yang, S. haeng Kang, and L. Thiele.
Scenario-based design flow for mapping streaming applications onto on-
chip many-core systems. In CASES, 2012. To appear.

[18] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):18:1–18:15, Aug. 2008.

[19] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping applications to
tiled multiprocessor embedded systems. In Application of Concurrency
to System Design, 2007. ACSD 2007. Seventh International Conference
on, pages 29 –40, july 2007.

[20] H. Yang and S. Ha. Ilp based data parallel multi-task map-
ping/scheduling technique for mpsoc. In SoC Design Conference, 2008.
ISOCC ’08. International, volume 01, pages I–134 –I–137, nov. 2008.

[21] H. Yang and S. Ha. Pipelined data parallel task mapping/scheduling
technique for mpsoc. In Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., pages 69 –74, april 2009.

[22] Y. Yi, W. Han, X. Zhao, A. Erdogan, and T. Arslan. An ilp formulation
for task mapping and scheduling on multi-core architectures. In Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09.,
pages 33 –38, april 2009.

[23] Q. Zhang and H. Li. A multi-objective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation,
Accepted, 2007, 2007.

[24] W. Zhou, Y. Zhang, and Z. Mao. Pareto based multi-objective mapping
ip cores onto noc architectures. In Circuits and Systems, 2006. APCCAS
2006. IEEE Asia Pacific Conference on, pages 331 –334, dec. 2006.

[25] E. Zitzler, D. Brockhoff, and e. al. The hypervolume indicator revisited:
On the design of Pareto-compliant indicators via weighted integration.
Evolutionary Multi-Criterion Optimization, 2007.

[26] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Computer En-
gineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzer-
land, May 2001.

[27] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert
da Fonseca. Performance Assessment of Multiobjective Optimizers: An
Analysis and Review. IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

37

