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Abstract—As single-processor systems are ceasing to scale
effectively, multi-processor systems are becoming more and
more popular. While there are many challenges of designing
multi-processor systems in hardware, writing efficient parallel
applications that utilize the computing capability of multiple
processors may reveal to be even more challenging. In this paper,
we introduce a framework that allows to efficiently execute
applications expressed as Kahn process networks on multi-
processor systems using protothreads and windowed FIFOs. We
show that application developers can use this framework to
achieve considerable speed-ups on the Cell Broadband Engine
without needing to write architecture-specific code.

I. INTRODUCTION

Currently, we are witnessing the evolution from single-
processor to multi-processor computing. Due to technology
restrictions, single-processor systems have ceased to scale
effectively, such that the growing demand for computing
power can only be satisfied by multi-processor systems.
Consequently, the performance of future systems will critically
depend on the efficient execution of applications on multiple
processors.

A promising paradigm for achieving efficient execution
is to use the Kahn process network (KPN) [1] model of
computation for programming multi-processor systems. The
KPN model allows to explicitly express the parallelism
in the application, while at the same time separating
computation from communication. This allows to parallelize
the computation and the communication in an application
and thus exploit the available parallel resources in a multi-
processor system. In addition, due to the well-defined
semantics of the KPN model, many pitfalls of parallel
execution, such as data races, nondeterminism, or the need for
strict synchronization can be avoided. Specifically, by using
a KPN-based design flow, such as the one proposed in this
paper, application developers only need to develop a high-
level specification of the application while the architecture-
specific implementation is automatically synthesized, leading
to implementations that are correct-by-construction.

Basically, a KPN describes an application as a network
of autonomous processes that communicate through FIFO
channels, as shown in Fig. 1 where a KPN application is
implemented on a dual-core platform. Especially streaming
applications, such as audio and video codecs, (array) signal

processing applications, or networking applications can be nat-
urally expressed as KPN applications because their algorithmic
structure matches well with the KPN model.
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Fig. 1. High-level model of a KPN application consisting of three processes
executing on a multi-processor system.

The biggest drawback of the KPN model is that the
communication between processes and their orchestration
can considerably limit the speed-up achievable by parallel
execution. The challenge is thus to keep this overhead low
when implementing a KPN application. The second challenge
is related to the parallel specification of an application
as a KPN where different levels of granularity can be
employed. Therefore, an ideal situation would be to hide
the communication and orchestration overhead when mapping
processes on the same processor and to execute a fine-grained
process network as if processes would be merged into a coarse-
grained implementation with less overhead.

On a first view, a runtime-system for executing multiple
processes on a single processor seems to come at considerable
cost in terms of development effort, runtime overhead, and
code size. This disregards, however, that providing quasi-
parallelism to execute processes in a KPN is much easier
than providing quasi-parallelism in a fully preemptive event-
or time-triggered system. In particular, we propose to use
so-called protothreads [2] to implement the quasi-parallelism
required for executing a KPN application. Protothreads are
usually used for programming small embedded systems, such
as wireless sensor nodes. Interestingly, the capabilities of
single processors in a multi-processor system are similarly
constrained concerning memory and performance, making
protothreads a good match for implementing the required
quasi-parallelism. Furthermore, we propose to use windowed



FIFOs instead of standard FIFOs for efficient communication.
Contrary to standard FIFOs where data need to be explicitly
copied into the FIFO buffer, windowed FIFOs allow processes
to directly access the FIFO buffer, thereby avoiding memory
copy operations.

Consequently, we propose an architecture-independent ap-
plication programming interface (API) for programming par-
allel applications as KPNs using protothreads and windowed
FIFOs. We implemented the corresponding runtime-system
and code synthesis backend for the distributed operation
layer (DOL) [3] framework that allows KPN applications
to efficiently execute on both single- and multi-processor
systems. Extensive experiments are carried out to support our
claims and show the effectiveness of the proposed approach. In
particular, we target a distributed memory architecture, namely
the Sony/Toshiba/IBM Cell Broadband Engine [4], where
we achieve speed-ups close to seven when executing KPN
applications using the PowerPC and six synergistic processing
elements. The framework is available for download under
http://www.tik.ee.ethz.ch/∼shapes/.

The remainder of the paper is structured as follows: In
the next section, related work is reviewed. In Section III,
the considered problems and the approach to solve them
are described. In Sections IV and V, the details of our
approach are presented. In Section VI, an implementation
of the approach targeting the Cell Broadband Engine is
described, and Section VII presents experimental results.
Finally, Section VIII concludes the paper.

II. RELATED WORK

The Kahn process network model of computation and
its ramifications are widely studied models for dataflow-
oriented applications [5]. Several frameworks for designing
multi-processor systems are based on the KPN model, such
as C-HEAP [6], CIC [7], Daedalus [8], [9], Koski [10],
MAMPS [11], OpenDF [12], SHIM [13].

In these frameworks, mainly the stages preceding software
synthesis have received the most attention, namely KPN
generation from programs written in a subset of Matlab or C,
design space exploration, and analytic and simulation-based
performance analysis. These steps are typically followed by
software synthesis for multi-processor systems or architecture
synthesis for FPGA platforms. The work in this paper
considers KPN software synthesis. In terms of software
synthesis, C-HEAP, CIC and Daedalus generate a functional
simulation of a KPN based on the Linux pthreads library. For
SHIM, a back-end for Intel multi-core processors has been
developed that is based on the Linux pthreads library, as well
[14]. Similarly, threads of the eCos operating system [15] are
used to execute processes in Koski. Unfortunately, as shown
in Section VII, kernel-space threads incur a considerable
overhead due to context switching that can severely limit the
achievable speed-up. An alternative approach for executing a
KPN in a quasi-parallel fashion is to use user-space threads.
An implementation of this approach is the open-source library
YAPI [16] developed at Philips Research.

In contrast to the mentioned approaches, we use so-
called protothreads [2], enabling the (preemptive) cooperative
execution of processes in a single CPU context using a single
stack. Thereby, the context switching overhead is very low
and no multi-threading support by an operating system is
required to execute multiple processes on a single processor.
Furthermore, we propose to use windowed FIFO channels [17]
for communication instead of standard FIFO channels, thereby
considerably reducing the communication overhead because
the costly copying of data can be avoided, as has already been
observed [6], [18]. Following this approach, KPN applications
can be considerably faster executed compared to using kernel-
space or user-space threads and standard FIFOs.

The goals achieved by the proposed approach can also
be achieved by restricting the model of computation. The
StreamIt framework [19], [20], for instance, is based on the
synchronous dataflow [21] model of computation. Compared
to KPN, synchronous dataflow is restricted to constant token
production and consumption rates for each channel. This
allows to statically schedule an application and to fuse
adjacent processes to coarsen the granularity of processes and
reduce the context switching overhead, for instance. Similar
observations apply to the Sequoia framework [22] which
is targeted at applications where computations are mainly
structured into loops that operate on arrays using highly
regular access patterns. We show that our framework based
on protothreads and windowed FIFOs is similarly effective,
while still being able to leverage the expressiveness of the
KPN model.

Finally, another alternative is to program multi-processor
systems without restricting to a certain model of computation.
Several high-level APIs to facilitate the programming of multi-
processor systems have been proposed, such as OpenMP [23],
MPI [24], Multiflex [25], and TTL [18]. Like in our approach,
these APIs allow to write architecture-independent code
that is automatically refined to a given architecture and
runtime-system. Due to the lack of an underlying model of
computation, however, design activities such as automatic
design space exploration or analytic performance analysis are
difficult to automate when using these APIs.

For performing experiments, we have developed a runtime-
system based on protothreads and windowed FIFOs for
the Sony/Toshiba/IBM Cell Broadband Engine (CBE) [4].
Runtime-systems for KPN applications executing on the CBE
have been developed for CIC [26], Daedalus [27], SHIM [28],
and StreamIt [20], as well as CBE-specific software synthesis
tools and libraries [29], [30]. All of these contributions have
in common that multiprocessing on the individual synergistic
processing elements (SPEs) of the CBE is very limited. Either
only a single process is executed on each SPE or, in case of
multiple processes, the scheduling is static and processes are
non-preemptive. The exchange of the complete SPE context
is a further possibility to run multiple processes on a single
SPE which is very costly in terms of context switching
time and only effective for tasks with a high granularity,
however. Contrary, by exploiting a runtime-system based on
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protothreads, we are able to execute multiple processes in a
quasi-parallel fashion on the SPEs. On the one hand, it is
thus possible to overlap communication and computation by
switching between processes when another process is waiting
for data. On the other hand, no manual merging or static
scheduling of processes is required which allows to completely
automate software synthesis. Finally, using protothreads also
allows to execute multiple applications (a set of disjunct
KPNs) in parallel on the CBE.

III. PROBLEM AND APPROACH

In this paper, the efficient execution of KPNs on multi-
processor systems is considered where “efficient” refers to
speed-up. Efficiency in terms of latency, power, or real-time
behavior is not considered in this paper. The goal is to
maximize the speed-up, that is, to reach a speed-up that equals
the number of processors in a multi-processor system.

Clearly, this goal could also be achieved by manu-
ally optimizing multi-processor applications for a specific
architecture which is a time-consuming effort, however.
The advantage of the KPN model is that the application-
independent parts, namely the implementation of FIFO
channel communication and the synchronization of processes,
can be implemented once and reused in any application. The
application programmer is then relieved from dealing with
these low-level details and can focus on the application-
specific parts. The goal is thus to specify applications using a
high-level API to achieve high speed-ups without sacrificing
huge amounts of development time.

To achieve these goals, we separate concerns, as follows:
• First, a high-level API is defined which allows applications

to be written in an architecture-independent way.
• Second, the high-level API is implemented in an

architecture-dependent runtime-system.
The key to achieve an efficient implementation is the

runtime-system. Regarding this implementation, the following
properties of the KPN model can be leveraged:

Untimed model. The KPN model is an untimed model of
computation, which means that a KPN application can be
executed in a completely data-driven manner. Each processor
in the system can thus execute autonomously as long as
data are available in the input channels and buffer space is
available in the output channels. The runtime-system running
on different processors can thus be implemented independently
from each other, as indicated in Fig. 1.

Cooperative processes. The processes of a KPN are de-
signed to cooperate. Therefore, a runtime-system for running
multiple processes of a KPN in a quasi-parallel fashion on a
single processor does not require all the mechanisms usually
found in a fully-fledged multi-tasking operating system, such
as full preemption, memory protection, or different scheduling
policies. Rather, preemption is only needed when processes are
blocked due to empty input channels or full output channels,
and it is even desirable to share memory between processes
to reduce the communication overhead. We leverage these
properties by using protothreads [2] for executing multiple

processes on a single processor and by using windowed FIFOs
[17] to share memory between processes.

Separation of computation from communication. While the
previous aspects are the basis for the efficient execution
of (a part of) a KPN on a single processor, the key for
multi-processor performance is to overlap communication
between processors with computations performed on these
processors. In a KPN, this is greatly facilitated due to the
explicit separation of computation from communication. In an
implementation, direct memory access (DMA) engines can be
used for parallelizing computation and communication in most
multi-processor systems.

Considering the properties and constraints described above,
the application specification using a high-level API and the
implementation of the runtime-system are described in the
following sections.

IV. APPLICATION SPECIFICATION

Conceptually, a KPN consists of autonomous processes
that can only communicate through unbounded point-to-
point FIFO channels [1]. In the KPN model, a process
is a monotonic and determinate mapping F from one
(or more) input streams to one (or more) output streams.
Monotonicity and determinism imply that an output stream
can be constructed by iteratively applying the mapping F
to subsequent parts of the corresponding input stream(s) and
concatenating the results: Y = F (X) : [y1, y2, . . .] =
[F (x1), F (x2), . . .]. Obviously, channels with unbounded
capacity cannot be realized in a physical implementation,
however. Still, a KPN semantics-preserving implementation
can use finite buffers that are accessed using blocking read
and write functions [31]–[33]. Blocking means that a process
stalls if it attempts to read data from an empty channel or if
it attempts to write to a full channel.

From a performance point of view, the communication
over FIFO channels can easily become a bottleneck in the
implementation of a KPN. This is because in a standard FIFO
implementation data need to be explicitly copied into the FIFO
buffer by the sender and explicitly copied to a local memory
of the receiver. This copying of data wastes CPU cycles which
can be avoided by using a windowed FIFO. A windowed FIFO
permits direct, random access to a window of the channel
buffer. While using windowed FIFO channels preserves the
KPN semantics, as has been formally proven in [17], it avoids
the costly copying of data because of the possibility to directly
access the channel buffer. In [18], for instance, the execution
time of an MP3 decoder could be reduced by approximately
30% by using windowed FIFOs instead of standard FIFOs.

Based on these considerations, we propose the high-level
API illustrated in Listing 1 for specifying KPN applications.
After a one-time initialization in the INIT function, the
execution of a process is split up into individual executions
of the FIRE function which needs to be repeatedly invoked
by a scheduler. Communication is enabled by accessing
windowed FIFOs using CAPTURE and CONSUME for reading
and RESERVE and RELEASE for writing. The functions



CAPTURE and RESERVE for acquiring a read-window and a
write-window, respectively, are blocking and return pointers
to a contiguous piece of memory in the FIFO buffer and
the actual size of the window. This way, in case there is
(temporarily) less than the specified amount of bytes available
in the windowed FIFO buffer, CAPTURE and RESERVE might
reserve a window with a smaller size than the requested one.

Listing 1. Implementation of a KPN process accessing a windowed FIFO
channel.

01 procedure I N I T ( P r o c e s s D a t a ∗p ) / / p r o c e s s i n i t i a l i z a t i o n
02 i n i t i a l i z e ( ) ;
03 end procedure
04

05 procedure F I R E ( P r o c e s s D a t a ∗p ) / / p r o c e s s e x e c u t i o n
06 w f i f o i n−>CAPTURE ( rbu f , s i z e ) ; / / a c q u i r e read−window
07 w f i f o o u t−>RESERVE ( wbuf , s i z e ) ; / / a c q u i r e w r i t e−window
08 m a n i p u l a t e ( ) ;
09 w f i f o i n−>CONSUME ( ) ; / / r e l e a s e read−window
10 w f i f o o u t−>RELEASE ( ) ; / / r e l e a s e w r i t e−window
11 end procedure

In addition to the functionality of individual processes
which is specified in C/C++ as shown in Listing 1, the
connections between processes by windowed FIFOs needs to
be described. For this purpose, we propose an XML format to
specify the topology of a KPN (see Listing 2).

Listing 2. XML specification of the KPN shown in Fig 1.

01 <p r o c e s s n e t w o r k>
02 <p r o c e s s name=” p r o d u c e r”>
03 <p o r t t y p e =” o u t p u t ” name=” o u t ”/>
04 <s o u r c e t y p e =” c ” l o c a t i o n =” g e n e r a t o r . c”/>
05 </ p r o c e s s>
06 <p r o c e s s name=” consumer”>
07 <p o r t t y p e =” i n p u t ” name=” i n ”/>
08 <s o u r c e t y p e =” c ” l o c a t i o n =” consumer . c”/>
09 </ p r o c e s s>
10 <p r o c e s s name=” worker”>
11 <p o r t t y p e =” i n p u t ” name=” i n ”/>
12 <p o r t t y p e =” o u t p u t ” name=” o u t ”/>
13 <s o u r c e t y p e =” c ” l o c a t i o n =” worker . c”/>
14 </ p r o c e s s>
15

16 <c h a n n e l t y p e =” w f i f o ” c a p a c i t y =”8” name=” channelA”>
17 <s e n d e r p r o c e s s =” p r o d u c e r ” p o r t =” o u t ”/>
18 <r e c e i v e r p r o c e s s =” worker ” p o r t =” i n ”/>
19 </ channe l>
20 <c h a n n e l t y p e =” w f i f o ” c a p a c i t y =”8” name=” channe lB”>
21 <s e n d e r p r o c e s s =” worker ” p o r t =” o u t ”/>
22 <r e c e i v e r p r o c e s s =” consumer ” p o r t =” i n ”/>
23 </ channe l>
24 </ p r o c e s s n e t w o r k>

For code synthesis for multi-processor systems, a mapping
of the processes to the available processors is required, as well.
For this purpose, we employ the XML format exemplified in
Listing 3.

Listing 3. XML specification of the mapping shown in Fig 1.

01 <mapping>
02 <b i n d i n g name=” b i n d i n g p r o d u c e r”>
03 <p r o c e s s name=” p r o d u c e r ”/> <p r o c e s s o r name=”CPU 1”/>
04 </ b i n d i n g>
05 <b i n d i n g name=” b i n d i n g w o r k e r”>
06 <p r o c e s s name=” worker ”/> <p r o c e s s o r name=”CPU 2”/>
07 </ b i n d i n g>
08 <b i n d i n g name=” b i n d i n g c o n s u m e r”>
09 <p r o c e s s name=” consumer ”/> <p r o c e s s o r name=”CPU 2”/>
10 </ b i n d i n g>
11 </mapping>

V. RUNTIME-SYSTEM AND SOFTWARE SYNTHESIS

To execute an application specified according to Section IV,
two components are required, namely a runtime-system that
provides an implementation of the API and a software
synthesis tool that implements the high-level application
specification on top of the runtime-system. In this section,
both components are described in general, while specific
implementation details follow in the next section.

A. Runtime-System

The task of the runtime-system is to implement the high-
level API routines for communication and to iteratively invoke
the FIRE function of processes. To execute a KPN, a runtime-
system has to provide three main services that are described
in the following:
• multi-processing on single processor,
• windowed FIFO communication on single memory, and
• windowed FIFO communication between memories.

Multi-processing on single processor. When running mul-
tiple processes on a single processor, it is necessary to be
able to switch between processes when blocking occurs.
The challenge is to keep the runtime-overhead associated
to multi-processing low. In the following, the term thread
is used to denote the mechanism that provides the multi-
processing capability on a single processor. In Table I, three
basic mechanisms to implement threads are compared, namely
kernel-space threads, user-space threads, and stack-less user-
space threads (protothreads).

TABLE I
COMPARISON OF DIFFERENT THREAD IMPLEMENTATIONS.

kernel-space user-space stack-less

thread
switching
mechanism

CPU context
switch, restoration
of thread table

restoration of
thread table

stack unwinding

scheduling time- or event-
driven

event-driven event-driven

preemption preemption at any
point by scheduler

voluntary preemp-
tion by threads

voluntary preemp-
tion by threads

stack one per thread one per thread shared among all
threads

example
library

POSIX threads
(pthreads)

YAPI1 [16],
SystemC2

protothreads3 [2]

1 http://y-api.sourceforge.net
2 http://www.systemc.org
3 http://www.sics.se/∼adam/pt/

Due to the reasons mentioned in Section III, protothreads
are a good choice for implementing the quasi-parallelism
required for KPNs: First, a context switch in protothreads
basically amounts to returning from one function and calling
another one. This takes considerably less time than context
switches for kernel-space or user-space threads, as will be
shown in Section VII. Second, all threads in a protothreads
environment share a single stack. This is a big advantage in
memory-constrained systems where dimensioning the stacks
for individual processes is often a difficult task. Third,
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protothreads are basically implemented using a set of macros.
This means that there is also little overhead in terms of code
size in contrast to kernel-space or user-space threads which
require a separate kernel for execution. Forth, protothreads are
architecture-independent, requiring only an ANSI-C compliant
compiler. Clearly, porting a kernel-space or user-space thread
library to a platform is more involved, usually requiring the
use of inline assembler for accessing certain CPU registers to
implement the thread context switch.

The main disadvantage of protothreads compared to kernel-
space und user-space threads is that the (potentially) blocking
windowed FIFO primitives must be contained within one
(FIRE) function because blocking statements cannot be used
in (nested) functions called from a protothread. Compared
to the advantages, this loss of flexibility for organizing the
application code is a small penalty, however.

Windowed FIFO communication on single memory. Using
windowed FIFOs for communication instead of ordinary
FIFOs is particularly advantageous for processes that share
the same memory because unnecessary copying of data can
be completely avoided by directly accessing the FIFO channel
buffer. In distributed memory architectures, usually all the
processes executing on a single processor share the same
local memory and can thus profit from this implementation.
In shared memory architectures, this implementation can even
be used for processes executing on different processors.

Fig. 2 illustrates our implementation of the windowed FIFO
that consists of a ring-buffer and four pointers to store the
state of the windowed FIFO. Data are enqueued at the tail and
dequeued from the head whereby each of the four windowed
FIFO access routines basically just moves one of the four
pointers. Since CAPTURE and RESERVE are required to return
pointers to a contiguous piece of memory, CAPTURE and
RESERVE limit the window size accordingly if a buffer “wrap-
around” would occur.

tail’

 h
ea

d

CONSUME()

RELEASE()

 ta
il

  head’

RESERVE()

CAPTURE()

Fig. 2. Implementation of windowed FIFO.

Windowed FIFO communication between memories. While
the implementation of the runtime-system using protothreads
and the implementation of windowed FIFO communication
on a single memory are architecture-independent, the imple-
mentation of the windowed FIFO communication between
memories is architecture-dependent. In any case, to be
able to parallelize computation and communication, an
implementation will utilize DMA controllers, if available.
Apart from that, there are many possibilities for implementing

the windowed FIFO. The FIFO buffer can be implemented
in the memory of the sender, the receiver, or both of them.
Similarly, either the sender or the receiver could issue the
DMA request. Finally, also a third processor could be used
for the buffering and coordination required in windowed FIFO
communication. In Section VI, a concrete windowed FIFO
implementation for the Cell Broadband Engine is discussed.

B. Software Synthesis

The software synthesis for a KPN application specified
according to Section IV basically consists of two steps, namely
embedding each process into a protothread and creating a
MAIN function for each processor.

The result of the first step is illustrated in Listing 4. The
process structure p stores the local data of a process, including
a variable linecount that is used as the argument for the
protothreads macros: Basically, linecount is used to store
at which point a function exits which is necessary in the
PT WAIT UNTIL and PT END macros. This enables to jump
back to that point when reentering the function which is
implemented in the PT BEGIN macro. For further details about
these macros, we refer to [2]. Clearly, the variables used in
FIRE either have to be declared static or reside in the local
data p of the process. Note that to create the code shown in
Listing 4, an automated source-to-source code transformation
is used.

Listing 4. Implementation of the process shown in Listing 1 based on
protothreads.

01 procedure F I R E ( P r o c e s s D a t a ∗p )
02 PT BEGIN (∗ ( p−>l i n e c o u n t ) ) ;
03 PT WAIT UNTIL (∗ ( p−>l i n e c o u n t ) ,
04 p−>w f i f o i n−>CAPTURE ( rbu f , s i z e ) == s i z e ) ;
05 PT WAIT UNTIL (∗ ( p−>l i n e c o u n t ) ,
06 p−>w f i f o o u t−>RESERVE ( wbuf , s i z e ) == s i z e ) ;
07 m a n i p u l a t e ( ) ;
08 p−>w f i f o i n−>CONSUME ( ) ;
09 p−>w f i f o o u t−>RELEASE ( ) ;
10 PT END(∗ ( p−>l i n e c o u n t ) ) ;
11 end procedure

In the MAIN function on each processor, basically just
windowed FIFO channels and processes are initialized before
entering the scheduler that repeatedly calls the FIRE functions
of processes bound to a processor as outlined in Listing 5.

Listing 5. MAIN used in the protothreads runtime-system that executes the
processes process1 and process2 bound to a processor.

01 procedure main ( )
02 p r o c e s s 1−>I N I T ( p r o c e s s 1 d a t a ) ;
03 p r o c e s s 2−>I N I T ( p r o c e s s 2 d a t a ) ;
04 do whi l e ( t r u e )
05 p r o c e s s 1−>F I R E ( p r o c e s s 1 d a t a ) ;
06 p r o c e s s 2−>F I R E ( p r o c e s s 2 d a t a ) ;
07 end do
08 end procedure

Finally, we did not consider a particular way to boot a
system, distribute the MAIN functions to each processor, and
invoke them. We use existing operating system services for
that purpose, as explained in the next section.



VI. EFFICIENT EXECUTION OF KPNS ON THE CBE

In the previous sections, the basic ideas that allow the
efficient execution of KPN applications on multi-processor
systems have been described. In this section, a concrete
implementation of a runtime-system and software synthesis is
described. Specifically, the distributed operation layer frame-
work [3] has been extended to execute applications on the
Cell Broadband Engine (CBE) [4]. The described framework
is available online: http://www.tik.ee.ethz.ch/∼shapes/.

Note that the approach based on protothreads and windowed
FIFOs is architecture-independent and porting the implemen-
tation to other multi-processor systems is thus relatively easy.

A. Cell Broadband Engine

A high-level block diagram of the CBE is outlined in Fig. 3.
The CBE is a heterogeneous multi-processor system and
consists of one 64-bit PowerPC processing element (PPE) and
eight synergistic processing elements (SPEs). All processors
are clocked at a frequency of 3.2 GHz and are interconnected
by a ring bus clocked at 1.6 GHz.

EIB Data Rings

SPE1
Local 
Store

MFC

PPE

Cache

SPE3
Local 
Store

MFC

SPE7
Local 
Store

MFC

SPE5
Local 
Store

MFC

SPE0

Local 
Store

MFC

SPE2

Local 
Store

MFC

SPE4

Local 
Store

MFC

SPE6

Local 
Store

MFC

Memory

MIC

Fig. 3. Simplified block-diagram of the CBE.

While the PPE is a PowerPC processor, the SPEs are RISC
processors with 128-bit SIMD organization that can process
up to four 32-bit integer or single-precision float values per
clock cycle. An SPE can only access its own local store, a
small memory of 256 kBytes. A DMA engine enables the
access to the main memory and the communication with other
SPEs. The element interconnect bus (EIB) that interconnects
all processors and the memory interface controller (MIC)
consists of four data rings (two running clockwise and two
running counterclockwise). The SPEs are connected to the EIB
through memory flow controllers (MFC) which are responsible
to manage DMA requests of SPEs. Besides the communication
via EIB, the PPE and SPEs can exchange 32-bit messages
using a mailbox system.

Concerning the implementation of KPNs on the CBE, the
following restrictions need to be taken into consideration:
• Preemptive scheduling is fully supported on the PPE

by using POSIX threads. Contrary, to the best of our
knowledge there is no kernel-space or user-space thread
library for the SPEs available which could be used to
implement quasi-parallelism.

• Due to the low bandwidth and high delay of mailbox
communication, mailboxes can only be efficiently used

for exchanging synchronization messages, but not for data
transfers.

• Due to the structure of the MFC, the source and the
destination buffers of a DMA transfer must be “naturally”
aligned. A memory block of N bytes is called “naturally”
aligned when the log2 N least significant bits of its
address are zero.

B. CBE Runtime-System

The runtime-system to execute a KPN application on the
CBE follows the principles explained in Section V-A. On the
PPE as well as on each SPE, multiple processes are executed in
a quasi-parallel fashion using protothreads. Windowed FIFOs
that connect processes executing on the same processing
element are implemented according to Fig. 2. In case of the
PPE, the channel buffer is implemented on the main memory,
while for SPEs it is implemented on the corresponding local
store. Note that this limits the sum of the size of the windowed
FIFO buffers mapped to an SPE to 256 kBytes minus the
fraction occupied by program code.

sender process receiver process

release() data available
(via mailbox)

data read
(via mailbox)

memcpy from 
temporary buffer to
local WFIFO buffer

DMA transfer 
from sender to 
temporary buffer

other process(es) might 
execute meanwhile

sender and/or 
other process(es) 
might execute 
meanwhile

reserve temporary
buffer

Fig. 4. WFIFO communication protocol between processes located on
different processors.

The single processors of the CBE only interact via
windowed FIFOs. The developed protocol is depicted in
Fig. 4. As Fig. 4 shows, windowed FIFO communication
only involves the sending and the receiving processes
and processors, respectively, thus not requiring any global
coordination. The basic principle underlying the protocol is
that data are forwarded as soon as possible from the sender
to the receiver. This means that data transfers from the local
store of the sender to the local store of the receiver are initiated
as soon as the sender has invoked a RELEASE. The receiver
regularly checks whether data are ready and carries out the
corresponding transfer. Consequently, RESERVE, CAPTURE,
and CONSUME are executed completely locally and do not
require any synchronization between processors.

The protocol works as follows: Whenever the sender has
released a window, it informs the receiver that new data
are available. Afterwards, the sender can continue as long
as the local windowed FIFO buffer is not full. Otherwise,
the sender blocks and waits until it receives a notification
message that the transfer has been completed. Meanwhile, if
other processes are ready to execute, they can be executed, of
course. The actual transfer is carried out by the receiver which
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checks whether new data are available on every invocation of
CAPTURE or whenever a process has finished its FIRE routine.
If a message about the availability of new data is present, the
receiver sets up a corresponding DMA transfer to copy the
data from the remote memory to its own local store. Due to the
alignment restriction, however, the MFC cannot directly copy
data between the involved windowed FIFO buffers. To deal
with this issue, a naturally aligned temporary buffer is used at
the receiver that serves as the destination for the DMA transfer.
If the window of the sender is not naturally aligned, the source
address is changed to the largest naturally aligned address that
is smaller than the source address, while increasing the number
of bytes to transfer. After the DMA transfer has been set
up, the receiver blocks until the transfer has been completed.
Like on the sender side, other processes can run meanwhile.
Finally, the receiver informs the sender about the completion
of the transfer, possibly unblocking a RESERVE invoked earlier
at the sender. To complete the transfer, the received data are
copied from the (aligned) temporary buffer to the (potentially
unaligned) buffer of the windowed FIFO, discarding the bytes
that have been transferred due to the alignment restriction.

Finally, to bootstrap a KPN application on the CBE, routines
provided by the CBE SDK [34] and Linux are used. Basically,
running Linux on the PPE allows the proposed runtime-
system to run as a single Linux process. During bootstrapping,
the runtime-systems for the SPEs are dispatched by the
PPE. Afterwards, an application can execute in a completely
distributed fashion.

Besides a runtime-system for the CBE, runtime-systems for
executing KPN applications on single-processor systems have
been implemented for the experiments. Specifically, single-
processor runtime-systems based on pthreads, SystemC, YAPI,
and protothreads have been implemented. Since the approach
is the same as for a single processor in a multi-processor
system, we refrain from giving further details.

C. Software Synthesis for the CBE

The goal of software synthesis is to implement a given high-
level specification of a KPN application on the runtime-system
described above. Fig. 5 shows an overview of this step: Given a
process network description, the source code of the processes,
and the mapping (binding) of processes to processors, the
architecture and runtime-system dependent source code and
Makefiles for their compilation are automatically created in
software synthesis.

For this purpose, we use the distributed operation layer
(DOL) framework which defines XML schemata for describ-
ing the topology of KPN applications and their mapping to
multi-processor systems, an API, and a set of coding rules
for the source code of processes (see Section IV). Written
in Java, the basic components of the DOL are parsers for
the XML specification files, corresponding data structures that
can be conveniently accessed, and code generators. Based
on this framework, the software synthesis steps described in
Section V-B have been implemented in less than 2000 lines
of Java code.

process 1

runtime-system

main

hardware abstraction layer (HAL)

process 2 process N

process
network
(XML)

mapping
(XML)

software synthesis

processes
(C/C++)

Makefile
process

wrappers
(C/C++)

main
(for each

processor)

Fig. 5. Software synthesis (left) and the structure of the resulting software
stack for a single processor (right).

VII. EXPERIMENTAL RESULTS

In this section, we present several experiments demon-
strating the performance of KPN applications implemented
using the proposed runtime-system based on protothreads
and windowed FIFO communication. We also compare the
performance to other runtime-systems for KPNs based on the
pthreads, SystemC, and YAPI library, respectively, for different
configurations and single-processor as well as multi-processor
systems. The goal is to demonstrate the main advantages of
our approach which are: (1) low runtime overhead for a single-
processor implementation, (2) high bandwidth and speed-up
close to the theoretic limit in the case of a multi-processor
implementation, (3) execution of fine-grained KPNs with the
efficiency of a coarse-grained implementation, and finally,
(4) implementation in a small memory footprint.

To enable the replication of the experiments, a package
containing all the required sources and scripts is available
online: http://www.tik.ee.ethz.ch/∼shapes/.

A. Single-Processor Performance

Experimental Setup
To determine the single-processor performance, we execute

synthetic KPN applications using the four runtime-systems
mentioned above under Linux (kernel 2.6.28) running on an
Intel Xeon processor clocked at 3.06 GHz. The used compiler
is GCC 4.1.2 and the optimization level -O2 is used for
all experiments. (The reason for running the single-processor
experiments on an Intel Xeon processor rather than on the PPE
or the SPE of a CBE is that suitable ports of the SystemC and
YAPI libraries were not available for the CBE.)

To measure the context switching and communication times,
we have designed two synthetic applications, referred to as
SINGLEFIFO and PINGPONG. The SINGLEFIFO application (see
Listing 6) has been designed to measure FIFO access times, its
basic functionality being to write/read to/from a FIFO channel.
As only a single process is executed, no context switches
occur. On the other hand, the PINGPONG application (see
Listing 7) has been implemented to measure context switching
times. When running PINGPONG, the runtime-system is forced
to switch between the two processes during each invocation of
FIRE because the processes communicate via FIFO channels
with a capacity that equals the size of the communicated
tokens. The context switching time is then estimated by
subtracting the FIFO access times from the total execution
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time. For comparison, we implemented both applications using
standard and windowed FIFOs.

Listing 6. SINGLEFIFO application for measuring FIFO access times.

01 procedure p r o c e s s f i r e ( P r o c e s s D a t a ∗p )
02 f o r ( i = 0 t o ITERATIONS − 1)
03 p−>f i f o−>w r i t e (∗ buf , s i z e ) ;
04 p−>f i f o−>r e a d (∗ buf , s i z e ) ;
05 end f o r
06 f o r ( i = 0 t o ITERATIONS − 1)
07 p−>wfi fo−>RESERVE (∗ buf , s i z e ) ;
08 p−>wfi fo−>RELEASE ( ) ;
09 p−>wfi fo−>CAPTURE (∗ buf , s i z e ) ;
10 p−>wfi fo−>CONSUME ( ) ;
11 end f o r
12 end procedure

Listing 7. PINGPONG application for measuring context switching times.

01 procedure p r o c e s s 1 f i r e ( P r o c e s s D a t a ∗p )
02 f o r ( i = 0 t o ITERATIONS − 1)
03 p−>f i f o 1−>w r i t e (∗ buf , s i z e ) ;
04 p−>f i f o 2−>r e a d (∗ buf , s i z e ) ;
05 end f o r
06 end procedure
07 procedure p r o c e s s 2 f i r e ( P r o c e s s D a t a ∗p )
08 f o r ( i = 0 t o ITERATIONS − 1)
09 p−>f i f o 1−>r e a d (∗ buf , s i z e ) ;
10 p−>f i f o 2−>w r i t e (∗ buf , s i z e ) ;
11 end f o r
12 end procedure

Context Switching Time
In Fig. 6, the context switching time and the (windowed)

FIFO access time are compared for the four APIs. As
expected, the protothread implementation introduces the
smallest context switching overhead. When compared to
a user-space thread implementation (YAPI or SystemC), a
protothread context switch is about 8 to 18 times faster.
When compared to pthreads, a protothread context switch it is
approximately 200 times faster. Note that the measured context
switching times include the execution of the scheduler which
is likely to consume the majority of the context switching time.

Windowed FIFO Communication
To measure and compare the execution time for accesses to

windowed and standard FIFOs, the SINGLEFIFO application
was used. The results are shown in Fig. 6 where FIFO
access stands for a single READ or WRITE and windowed
FIFO access stands either for RESERVE, RELEASE or for
CAPTURE, CONSUME. (For both FIFO types, the read and
write primitives take approximately the same time.) While
the standard and windowed FIFO access times are similar
for small accesses, the windowed FIFO is considerably
more efficient for large accesses: In case of the windowed
FIFO, basically only the pointers shown in Fig. 2 have to
be updated. The duration of the involved operations is thus
independent from the actual number of transmitted bytes.
In case of the standard FIFO, however, the data to transmit
actually need to be copied into the FIFO buffer, increasing
the access time as the number of transmitted bytes increases.

no
t a

pp
lic

ab
le

Fig. 6. Comparison of execution times for a context switch and (windowed)
FIFO access in different thread implementations. The duration of a context
switch and a windowed FIFO access in the protothread implementation
amount to roughly 300 and 150 clock cycles, respectively, thus enabling the
efficient execution of rather fine-grained process networks.

Code Size
Table II shows that in addition to high performance, a

runtime-system based on protothreads introduces only a small
overhead in terms of application size.

TABLE II
SIZE OF THE BINARY OF THE PINGPONG APPLICATION IMPLEMENTED

USING DIFFERENT KPN RUNTIME-SYSTEMS.

protothreads YAPI SystemC pthread

size [kBytes] 42 1443 1343 461
size after stripping [kBytes] 9 113 221 32

B. Multi-Processor Performance

The first part of this section has shown that a runtime-
system based on protothreads together with windowed FIFO
communication enables the efficient execution of KPNs on
single-processor systems. We now examine the performance
on a multi-processor system.

Experimental Setup
A Sony PlayStation 3 running Yellow Dog Linux 6.1

(kernel 2.6.23) is used for the experiments. The Sony
PlayStation 3 contains a single CBE whereby the PPE and
six SPEs are available for user applications. We used the
GCC compilers PPU-G++ 4.1.1 and SPU-G++ 4.1.1 with all
optimizations enabled.

Context Switching and FIFO Communication on the CBE
Using the same experiments as in the single-processor

evaluation, we measure the context switching time and
compare the standard and windowed FIFO access times
for the PPE and SPEs. In Fig. 7, the execution times of a
context switch and of various FIFO accesses are outlined.
The plot clearly indicates that the PPE and the SPE behave
in a similar way as the Intel Xeon architecture used in the
single-processor evaluation.



Fig. 7. Comparison of the execution times of a context switch and various
FIFO accesses on the CBE.

Inter-SPE Data Transfer Rate
To measure the peak data transfer rate between SPEs, two

experiments are performed: First, a chain of six processes was
mapped onto the six SPEs (one process per SPE). Second, a
chain of 12 processes was mapped onto the six SPEs (two
processes per SPE). To connect the processes in the chains,
windowed FIFO channels with a size of 16384 bytes are used
which corresponds to the maximum size of a single DMA
transfer on the CBE.

Fig. 8 shows the aggregate inter-SPE data transfer rates for
the two chains whereby the number of bytes transmitted in a
single windowed FIFO access is varied between 512 bytes and
16384 bytes. The observed peak data rates are 9.8 Gbytes/s
when one process is executed on each SPE, and 10.9 Gbytes/s
when two processes are executed on each SPE. In the latter
case the data rate is higher because the data transfers initiated
by the two processes on each SPE can be partially overlapped.

Even higher data rates have been reported in [30], where in
a similar test setup a data rate of approximately 17.3 Gbytes/s
has been achieved for an MPI implementation on the CBE.
That implementation assumes naturally aligned source
and destination buffers, thereby saving the memory copy
operations required in our implementation.

1024 2048 4096 8192 16384512

Fig. 8. Aggregate inter-SPE data transfer rate.

Speed-Up due to Parallelization
To evaluate the speed-up of applications that can be

achieved using the proposed framework, a motion JPEG

(MJPEG) decoder is used. MJPEG is a video codec in which
each video frame is separately compressed as a JPEG image.
The process network and mapping used for this evaluation
are depicted in Fig. 9. We distinguish between a coarse-
grained and a fine-grained implementation: In the coarse-
grained implementation, a complete frame is decoded in
each of the processes called “decode frame”. In the fine-
grained implementation, “decode frame” splits a frame into
segments of 40 macroblocks that are then subjected to
inverse quantization, zigzag scan, and inverse discrete cosine
transform. In both cases, the process “split stream” reads the
video stream from a file and dispatches single video frames to
the subsequent processes. “merge stream” collects the decoded
frames and displays them. Each “decode frame” process (with
its associated “child processes” in the case of the fine-grained
implementation) is mapped to an SPE. “split stream” and
“merge stream” are mapped to the PPE.

split stream

decode frame

merge stream

decode frame

inverse
quantization

zigzag scan

inverse DCT

PPE SPE(s) PPE

Fig. 9. KPN of the MJPEG decoder. The lower part of the KPN indicates
the structure of the fine-grained implementation.

In Fig. 10, the time for decoding 3100 frames using the
MJPEG algorithm is compared for implementations on a
different number of SPEs. Obviously, the peak-performance
can be achieved when a “decode frame” process is mapped
to each of the six SPEs. In that case, a grayscale video of
320 × 240 pixels can be decoded with a frame rate of 942
frames/s. Mapping all processes to the PPE leads to a frame
rate of 136 frames/s, thus a speed-up of almost seven can be
achieved when using the PowerPC and all six SPEs. The plot
also shows that by leveraging protothreads and communication
via windowed FIFOs the overhead of the fine-grained version
compared to the coarse-grained version is only about 5%.

1 SPE 2 SPEs 3 SPEs 4 SPEs 6 SPEs5 SPEsPPE only

Fig. 10. Execution time and speedup of the MJPEG application for a varying
number of SPEs. The speed-up of the coarse-grained implementation refers
to the right y-axis.



VIII. CONCLUSION

In this paper, we have demonstrated that Kahn process
networks can be efficiently executed on multi-processor
systems. To achieve this goal, we propose to use protothreads
to implement quasi-parallelism on the single processors
in the system and windowed FIFOs to implement the
communication between processes. This keeps the runtime-
overhead very low such that speed-ups close to the theoretical
bound can be achieved. Our solution can be easily ported
to different architectures because only the implementation
of the windowed FIFO communication between different
processors is architecture-dependent. We demonstrated the
viability of the proposed approach by running KPNs on the
Cell Broadband Engine achieving speed-ups close to seven on
seven processors.
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